ProgramMaster Logo
Conference Tools for MS&T23: Materials Science & Technology
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting MS&T23: Materials Science & Technology
Symposium 3D Printing of Biomaterials and Devices
Presentation Title Three-Dimensional Printing of Low Viscosity Bioinks Utilizing a Gelatin Printing Support Bath
Author(s) Emily Lazarus, Iris Rivero
On-Site Speaker (Planned) Emily Lazarus
Abstract Scope Extrusion-based printing is a common three-dimensional (3D) printing strategy for fabricating biomaterial scaffolds, yet limitations exist when printing low viscosity hydrogels, which are extensively used for tissue engineering applications. Complex geometries cannot be printed with high fidelity due to the high loss modulus of hydrogel bioinks, which results in collapsing of the printed part. To overcome this limitation, this work investigates the fabrication and rheological characterization of a gelatin slurry printing bath that will act as support during printing. Complex structures, which could not be fabricated through extrusion-based printing, were designed using nTopology. 8% alginate scaffolds were printed inside the bath, and their structural properties analyzed. Results showed high fidelity of the printed scaffolds to the 3D designs and suggested that printing with low viscosity inks is possible using a printing bath. This work advances the use of 3D printed in vitro models that more closely resemble their natural counterparts.

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

3D Biofabrication Strategies for Highly-aligned Fibrous Soft Tissues
3D Printed Biodegradable Polyester Scaffolds that Address Wound Biofilms and Bacterial Colonization
3D Printing of Design-specific PEEK-based Standalone Bioactive Implants
An Additive Manufacturing-oriented Design Approach: Hip Joint Case Study
Bone Tissue Engineering under Fluid Flow Conditions for Development of Invitro Testbeds of Cancer Metastasis
C-1: 3D Bioprinting for Ophthalmic Applications
C-2: Core/shell PCL/PLGA for Controlled Release of Antibiotic and Tissue Engineering
C-4: Measurement of Volumetric Tribo-corrosion of Zirconia-toughened Alumina (ZTA)-Ti6Al4V-Hydroxyapatite (HA) Composite Femoral Heads Articulating Against Ultra-high Molecular Weight Polyethylene (UHMWPE)
C-5: Release of Natural Medicines from 3D Printed CaP for Bone Tissue Engineering Applications
C-6: Synergistic Effects of Carvacrol and Curcumin Nanoparticle on 3D Printed Scaffold for Bone Tissue Engineering
Effect of Release of Garlic Extract from CaP Bone Grafts for Bone Tissue Engineering Applications
Engineered Living Material with pH-responsive Shape-morphing Capability Fabricated by 3D Printing
Engineering Porosity for the Stiffness-Matching of Nickel-Titanium Mandibular Graft Fixation Plates
Impact of Fluid Flow on Bone Metastasis of Prostate Cancer: Invitro Testbeds of Bone Metastasis
In Vivo and In Vitro Bio-corrosion of Zirconia-toughened Alumina (ZTA)-Ti6Al4V-Hydroxyapatite (HA) Load-bearing Articulation Implant Surfaces
Multi-axis Melt Electrowriting Fabrication of Membranes with Curving Surfaces Using Novel Biomaterials
Multifunctional Peptide Design for Functional Biomaterials
Polymer Additive Manufacturing for Micro Medical Device Applications
Silica-Doped 3D Printed Scaffold Loaded with Carvacrol Nanoparticles for Bone Tissue Engineering
Three-Dimensional Printing of Low Viscosity Bioinks Utilizing a Gelatin Printing Support Bath
Utilizing Chaotic Advection to Bioprint Hydrogel Sheets with User-Defined, High-Resolution Internal Cell Layers

Questions about ProgramMaster? Contact programming@programmaster.org