ProgramMaster Logo
Conference Tools for MS&T23: Materials Science & Technology
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting MS&T23: Materials Science & Technology
Symposium 3D Printing of Biomaterials and Devices
Presentation Title 3D Printed Biodegradable Polyester Scaffolds that Address Wound Biofilms and Bacterial Colonization
Author(s) Abraham Joy, Deliris Ortiz
On-Site Speaker (Planned) Abraham Joy
Abstract Scope We have developed a platform of 3D printable polyesters that are biodegradable within the timeframe of wound healing. Such polyesters can be encapsulated with therapeutics and 3D printed to provide bioactive scaffolds that address the physical and biochemical requirements for wound healing. In this talk we will present the design of polyesters designed for direct-write extrusion-based 3D printing and their fabrication into 3D printed scaffolds. We will also describe the design of polyurethanes and their antibiofilm properties. Encapsulation and release of the antibiofilm polyurethane, combined with an antibiotic enables disruption of the biofilm and decrease of bacterial load, enabling wound healing progression. This platform is envisioned to promote a pro-healing environment and recapitulate native wound healing while providing a cost-effective and widely deployable alternative to current devices in the clinic.

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

3D Biofabrication Strategies for Highly-aligned Fibrous Soft Tissues
3D Printed Biodegradable Polyester Scaffolds that Address Wound Biofilms and Bacterial Colonization
3D Printing of Design-specific PEEK-based Standalone Bioactive Implants
An Additive Manufacturing-oriented Design Approach: Hip Joint Case Study
Bone Tissue Engineering under Fluid Flow Conditions for Development of Invitro Testbeds of Cancer Metastasis
C-1: 3D Bioprinting for Ophthalmic Applications
C-2: Core/shell PCL/PLGA for Controlled Release of Antibiotic and Tissue Engineering
C-4: Measurement of Volumetric Tribo-corrosion of Zirconia-toughened Alumina (ZTA)-Ti6Al4V-Hydroxyapatite (HA) Composite Femoral Heads Articulating Against Ultra-high Molecular Weight Polyethylene (UHMWPE)
C-5: Release of Natural Medicines from 3D Printed CaP for Bone Tissue Engineering Applications
C-6: Synergistic Effects of Carvacrol and Curcumin Nanoparticle on 3D Printed Scaffold for Bone Tissue Engineering
Effect of Release of Garlic Extract from CaP Bone Grafts for Bone Tissue Engineering Applications
Engineered Living Material with pH-responsive Shape-morphing Capability Fabricated by 3D Printing
Engineering Porosity for the Stiffness-Matching of Nickel-Titanium Mandibular Graft Fixation Plates
Impact of Fluid Flow on Bone Metastasis of Prostate Cancer: Invitro Testbeds of Bone Metastasis
In Vivo and In Vitro Bio-corrosion of Zirconia-toughened Alumina (ZTA)-Ti6Al4V-Hydroxyapatite (HA) Load-bearing Articulation Implant Surfaces
Multi-axis Melt Electrowriting Fabrication of Membranes with Curving Surfaces Using Novel Biomaterials
Multifunctional Peptide Design for Functional Biomaterials
Polymer Additive Manufacturing for Micro Medical Device Applications
Silica-Doped 3D Printed Scaffold Loaded with Carvacrol Nanoparticles for Bone Tissue Engineering
Three-Dimensional Printing of Low Viscosity Bioinks Utilizing a Gelatin Printing Support Bath
Utilizing Chaotic Advection to Bioprint Hydrogel Sheets with User-Defined, High-Resolution Internal Cell Layers

Questions about ProgramMaster? Contact programming@programmaster.org