ProgramMaster Logo
Conference Tools for MS&T23: Materials Science & Technology
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting MS&T23: Materials Science & Technology
Symposium 3D Printing of Biomaterials and Devices
Presentation Title C-1: 3D Bioprinting for Ophthalmic Applications
Author(s) Peter A. Jansen, Mia Jeter, Vedshree Deshmukh, Cynthia J. Roberts, Katelyn E. Swindle-Reilly
On-Site Speaker (Planned) Peter A. Jansen
Abstract Scope The creation of tissue engineered scaffolds through 3D bioprinting has become a more widely used process. In the field of ophthalmology 3D bioprinting of synthetic corneal replacements has gained considerable interest, in part due to the significant corneal donor shortage worldwide. Using extrusion 3D bioprinting allows for the manufacturing of synthetic corneal grafts. We are targeting desired material properties by varying printing parameters and base materials. The use of cellular and non-cellular materials is possible, and depending on the base materials these can be crosslinked during the printing process. To address immunologically challenged applications we are working to produce an acellular graft with low toxicity, which can be transplanted and would fully integrate with the surrounding tissue over time. We will show that naturally derived extrudable materials like silk fibroin, or gelatin can be used in the 3D extrusion bioprinting process to create viable biomaterial scaffolds.

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

3D Biofabrication Strategies for Highly-aligned Fibrous Soft Tissues
3D Printed Biodegradable Polyester Scaffolds that Address Wound Biofilms and Bacterial Colonization
3D Printing of Design-specific PEEK-based Standalone Bioactive Implants
An Additive Manufacturing-oriented Design Approach: Hip Joint Case Study
Bone Tissue Engineering under Fluid Flow Conditions for Development of Invitro Testbeds of Cancer Metastasis
C-1: 3D Bioprinting for Ophthalmic Applications
C-2: Core/shell PCL/PLGA for Controlled Release of Antibiotic and Tissue Engineering
C-4: Measurement of Volumetric Tribo-corrosion of Zirconia-toughened Alumina (ZTA)-Ti6Al4V-Hydroxyapatite (HA) Composite Femoral Heads Articulating Against Ultra-high Molecular Weight Polyethylene (UHMWPE)
C-5: Release of Natural Medicines from 3D Printed CaP for Bone Tissue Engineering Applications
C-6: Synergistic Effects of Carvacrol and Curcumin Nanoparticle on 3D Printed Scaffold for Bone Tissue Engineering
Effect of Release of Garlic Extract from CaP Bone Grafts for Bone Tissue Engineering Applications
Engineered Living Material with pH-responsive Shape-morphing Capability Fabricated by 3D Printing
Engineering Porosity for the Stiffness-Matching of Nickel-Titanium Mandibular Graft Fixation Plates
Impact of Fluid Flow on Bone Metastasis of Prostate Cancer: Invitro Testbeds of Bone Metastasis
In Vivo and In Vitro Bio-corrosion of Zirconia-toughened Alumina (ZTA)-Ti6Al4V-Hydroxyapatite (HA) Load-bearing Articulation Implant Surfaces
Multi-axis Melt Electrowriting Fabrication of Membranes with Curving Surfaces Using Novel Biomaterials
Multifunctional Peptide Design for Functional Biomaterials
Polymer Additive Manufacturing for Micro Medical Device Applications
Silica-Doped 3D Printed Scaffold Loaded with Carvacrol Nanoparticles for Bone Tissue Engineering
Three-Dimensional Printing of Low Viscosity Bioinks Utilizing a Gelatin Printing Support Bath
Utilizing Chaotic Advection to Bioprint Hydrogel Sheets with User-Defined, High-Resolution Internal Cell Layers

Questions about ProgramMaster? Contact programming@programmaster.org