ProgramMaster Logo
Conference Tools for 2024 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2024 TMS Annual Meeting & Exhibition
Symposium Advanced Biomaterials for Biomedical Implants
Presentation Title Development of Antibacterial Metal Oxide Thin Films for Neurostimulation Applications via Atomic Layer Deposition
Author(s) Henna Khosla, Shahram Amini, Gang Feng
On-Site Speaker (Planned) Henna Khosla
Abstract Scope Atomic layer deposition is a thin-film deposition technique enabling precise control of film thickness and uniformity at the nanoscale. Metal oxide thin films with antibacterial properties can be deposited via ALD. These films can be applied to the surface of neurostimulation electrodes to prevent bacterial colonization and reduce the risk of post-implantation infections. In this work, we report on the development of antibacterial platinum-iridium electrodes using a two-step process. Electrodes are first hierarchically restructured using femtosecond-laser and then atomic layer deposition is used to deposit ultrathin metal oxides of CuO and ZnO on hierarchically restructured electrodes. Structural, chemical, and mechanical properties of film were studied using X-ray diffraction, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, scanning electron microscopy and nanoindentation. The antibacterial properties of the ALD-coated electrodes are also studied, particularly, the killing effect on the two common types of bacteria (E. coli and S. aureus) responsible for implantation infections.
Proceedings Inclusion? Planned:
Keywords Characterization, Biomaterials, Mechanical Properties

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

Bioactive Glasses for Bone Repair and Dental Applications: A Review of Osteointegration and Controlled Ion Release Capabilities
Biocompatibility Evaluation of TiZrNbSiMo High Entropy Alloy Coatings Fabricated by High Power Impulse Magnetron Sputtering
Bioinspired and Electrospun Helically Structured Nanofibers for Cardiac Patch Application
Bone Reconstruction Patient-specific Implants Based on PEI
Corrosion Behaviour of Ti-xCu Alloys for Dental Applications
Design-specific and Multi-functional (Bioactive and Antibacterial) PEEK-based Implants
Design and Application of Porous PDMS Membrane Devices in Nude Mice for Localized Treatment of Triple Negative Breast Cancer
Design and Enhancing Bbiocompatibility of β- titanium Alloy via Electro-discharge Treatment Process
Development of Antibacterial Metal Oxide Thin Films for Neurostimulation Applications via Atomic Layer Deposition
Development of Antibacterial Neural Interfacing Electrodes via Hierarchical Surface Restructuring and Atomic Layer Deposition
Enhancing Mechanical Properties of a Lightweight Biomimetic Structure by 3D Printing for Bone Tissue Engineering Application
Exploring the Microstructure of Marine Sponge Spicules: Insights for Biomimetic Bone Tissue Engineering
H-1: Bioactive Glass-ceramic Nanoparticle for Medical Implants
Hybrid Manufacturing of Superelastic Arterial Stents
Improving Free Flap Donor Site Stabilization with the Use of Additively Manufactured Custom Fixation Plates
Improvisation of Phase Stability and Texture in Biomedical Ti-based Alloys for Ultra Low Modulus Applications
In Vivo InflammatoryReaction and Elemental Trafficking of Magnesium Bioimplant Derived Aluminum
Manipulating Precipitate Population to Modulate Corrosion and Al Release in Mg-9Al Biodegradable Implants
Mechanical Integrity Testing of Bioresorbable Zn-based Alloy Under Static and Cyclic Loadings
Microstructural and Mechanical Analysis of Aerosol Jet 3D Printed Micropillars and Their Biocompatibility in Mouse Brain
Nano-biosensor to Manage COVID-19 Infection and Long-COVID
New MRI-compatible Metallic Materials for Miniaturized Implants
Novel Ti-10Mo-Mn Alloys for Biomedical Applications
Optimizing Printing Orientation for Spicule-Inspired Structures for Biomedical Applications
Optimizing the Bio-degradability and Biocompatibility of a Biogenic Collagen Membrane Through Cross-linking And Zinc-doped Hydroxyapatite
Orthopedic Patient Specific 3D Printed Implants Based on Novel Composite PEEK Filaments
Reducing Stress Shielding in Hip Implants Using 3D Printed Superelastic Titanium Alloy
Reimagining Implantable Leads: Exploring the Value of Using Aerosol Printing Technology to Replace Wire-based Structures in High-density Connections
Tailored Nanofiber Microspheres with Tunable Morphology for Accelerated Diabetic Wound Healing
The Development of Antimicrobial Ti-Cu Alloys and Understanding of their Mode of Action
Using Artifical Intelligence (AI) to Improve Medical Devices
Young Leaders International Scholar – KIM Lecture: Electrochemically Controlled Drug Delivery Valve that Exploits Crevice Corrosion

Questions about ProgramMaster? Contact programming@programmaster.org