ProgramMaster Logo
Conference Tools for MS&T23: Materials Science & Technology
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting MS&T23: Materials Science & Technology
Symposium 15th Symposium on Green and Sustainable Technologies for Materials Manufacturing and Processing
Presentation Title Computational Methods for Designing Effective Compatibilizers for Recycled Polymer Blends
Author(s) Manav Bhati, Mohammad Atif Faiz Afzal, Andrea Browning, Mathew Halls
On-Site Speaker (Planned) Manav Bhati
Abstract Scope Recycling polymers has become increasingly crucial to address their ever-growing demand and reduce their environmental impact. However, recycling them is challenging due to the differences in their chemical properties. The additives called compatibilizers can help by making dissimilar polymers compatible. Nonetheless, not all compatibilizers work for a polymer blend, and selecting the best ones involves several experimental trials. Atomistic simulations can reduce this effort and give insights into how atomistic chemistry influences the bulk physical properties of these composites. We will present the findings from our atomistic investigation set of compatibilizers for the polypropylene-polystyrene blend. Our simulation results closely align with previous experimental data. Furthermore, we apply the simulation protocol to a new set of compatibilizers for the same blend and identify potential candidates with superior compatibility. This work demonstrates the value of physics-based simulations in guiding the experimental design of potential compatibilizers for polymer blends.

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

A Sustainable and Energy-efficient Electrochemical Technology for Dewatering of Cellulosic Nanomaterials
Advanced Manufacturing of Lunar Regolith Simulants for In-Situ Resource Utilization
Coke Gasification Pulverization and Carbon Bearing Powder Characteristics in a Blast Furnace
Computational Methods for Designing Effective Compatibilizers for Recycled Polymer Blends
Corrosion Resistant Coatings on Steel for Nuclear Energy Applications
Development of Novel Functional Materials from Biomass
Energy Efficiency and Thermo-mechanically Affected Zone Size in Solid-state Welding
Fabrication and Material Properties of Silicon Nitride Bearing Grade Balls for Hybrid Ball Bearing Applications.
Factors Affecting the Thermal Conductivity of Liquid-phase Sintered Silicon Carbide Ceramics
Green Synthesis of Calcium Molybdate Using Bimetallic Precursors
Little Known Nylon: Bio-Based Feedstocks and Synthesis for Nylon 5,9
Molten Oxide Electrolysis for Reducing the Carbon Footprint of Technology-critical Metals
Nanoclays in Biomaterials Design: From Regenerative Medicine to Invitro Disease Models
O-1: Briquetting Waste Glass Fines to Enable Recycling
O-2: Effect of Heating Rate during Sulfurization on the Growth of Ethanol Based Solution Processed Cu2ZnSnS4 Thin Films
O-3: Facile Growth of Cu2ZnSn(SSe)4 Thin Films with Controlled Phase and Microstructure from Ethanol Based Molecular Solutions
O-4: Mesoporous Silica Material with Yolk Shell Morphology for Effective Removal of Environmental Pollutants
O-5: Rapid Method Development and Optimization for Environmental Monitoring by Gas Chromatography Using ProEZGC – A Free Web-based Software
O-6: Response of Ghana’s Akokorowa Iron Ore to Reduction by Carbonaceous Material Generated from Pyrolytic Chars of End-of-Life Tyres
Recycling Strategies for End-of-Life Solid Oxide Cell Materials
Strategies for Patenting "Green" Technologies
Structure and Stability of Cement-Zeolite Systems for Enhanced Carbon Uptake in Ambient Conditions
Synthesis of a Novel Cuprate with Gold under a High Oxygen Partial Pressure
The Investigation of an Energy-efficient Coking Technique Based on the Hot Tamping Operation
The Roles of Co and Ni Additions to High Solute Content Fe-contaminated Al Alloys in Beneficing Microstructure and Tensile Properties
Transparent Yttria Ceramics Fabricated Using Direct Ink Writing Printing and Vacuum Sintering

Questions about ProgramMaster? Contact programming@programmaster.org