ProgramMaster Logo
Conference Tools for 2024 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2024 TMS Annual Meeting & Exhibition
Symposium Towards a Future of Sustainable Production and Processing of Metals and Alloys
Presentation Title Residual Stresses from Solid Phase Processes: Relationships to Distortion and Process Parameters
Author(s) Kranthi Balusu, avik samanta, Shivakant Shukla, Hrishikesh Das, saumyadeep jana, Piyush Upadhyay, Aashish Rohatgi, Ayoub Soulami
On-Site Speaker (Planned) Kranthi Balusu
Abstract Scope Solid phase processes that induce beneficial microstructures also typically cause part-scale residual stresses. These stresses are often not a priority in process development studies, and the focus is on determining local mechanical properties through material characterization and testing on small cut samples. Nevertheless, residual stresses and the associated distortion must be considered because they could negatively affect the part properties. In this work, we utilize the electronic speckle pattern interferometry (ESPI) hole drilling technique to investigate the residual stress distributions from two kinds of solid phase processes, peening and friction stir processing, and for two aluminum alloys. This instrument's through-thickness stress measurements make it possible to relate stresses to distortion. A study of the effect of changing process parameters was also carried out. This work aims to incorporate residual stresses in understanding the process-part property relationships and optimize the development of solid phase processes.
Proceedings Inclusion? Planned:
Keywords Aluminum, Characterization, Mechanical Properties

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

Accelerating Rate Limited Kinetics in Hydrogen-direct Iron Reduction: Combining Ptycho-Tomography and Percolation Insights
Advancing Sustainability in the Metallurgical Industry through Innovation and Digitalization
C-32: Development of Stable Pulse MIG Welding Technology for Automotive Ultra-high Strength Steel
C-33: Influence of Grain Size on the Hydrogen-based Reduction of Iron Oxide Films
Current Attempts and Challenges in Decarbonizing Steel Production
Environmentally Friendly Synthesis of Anhydrous Rare Earth Fluorides Derived from e-wastes for Rare-earth Metallization
High-resolution Hydrogen Mapping for Understanding Hydrogen Interaction with Steel Microstructure
HYBRIT Pilot Development for Transformation to Fossil Free Iron and Steel
Hydrogen-based Iron Oxide Reduction for Green Steel Making Studied by Atomprobe Tomography
Hydrogen Reduction of Ferroalloys
Identifying Strong Hydrogen Trapping Site Induced by Deformation in Pearlitic Steels
Influence of Pre-oxidation on the Hydrogen-based Direct Reduction of Combusted Iron Powder
Iron Production by Molten Sulfide Electrolysis
Making Green Steel by Using Ammonia as Reductant
Manufacturing Fe-W Foams with Hierarchical Porosities via Hydrogen Reduction
Melting Efficiently Rare Earth Steel by Whole Scrap Steel
Metal Paste Deposition of Iron Parts from Iron Oxide (Fe3O4) Paste
Numerical Modelling of Hydrogen Pre-reduction Lump Ores in Shaft Furnace for Ironmaking
Phase-field Modeling of Iron Oxide Reduction with Hydrogen: Role of Porosities
Process Modeling and Microstructure Evolution Analysis for Friction Stir Processing of 316 L Stainless Steel Using Smoothed Particle Dynamics Method
Recycling of Secondary Metal Scrap by Solid Phase Processing
Reduction Kinetics of Hematite Powder Using Hydrogen Plasma with Prospects for Near-net Shaping of Sustainable Iron
Repair of High-Strength Aluminum Aircraft Fastener Holes via Additive Friction Stir Deposition
Research and Applicaton on Low-carbon Technologies of Ironmaking Process
Research on Pellet Hydrogen Reduction Followed by Melting Separation for Utilizing Oolitic High-phosphorus Iron Ore
Residual Stresses from Solid Phase Processes: Relationships to Distortion and Process Parameters
Solid-state Recycling of Aluminum Alloys, an Innovative Process for Enhanced Sustainability
Suppressing Surface Hot Shortness in Sheet Production from High Cu Containing Recycled Steels Using Metal Peeling
Sustainable Development for the 21st Century – Challenges and Opportunities for Materials Engineering of Post-consumer Waste
Sustainable Production of Chromite Pellets: Enhancing Pre-reduction Efficiency with Methane-hydrogen Gas Mixtures
Upcycle Aluminum Alloys via Solid Phase Alloying
Visualizing the Atomic Scale Diffusional Mechanisms during Reduction of Epitaxial and Single Crystalline Iron Oxides with Hydrogen

Questions about ProgramMaster? Contact programming@programmaster.org