ProgramMaster Logo
Conference Tools for 2020 AWS Professional Program
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2020 AWS Professional Program
Symposium 2020 AWS Professional Program
Presentation Title SMART Camera in the Welding Torch for Manual Welding Quality and Productivity
Author(s) Jerald Edward Jones, Valerie L Rhoades, Mark D. Mann, Terry Surufka, James Dydo, Lisa Elles, Maurissa D'Angelo, Nicholas Braniff, Mike Buelsing, Todd Holverson, Susan Fiore
On-Site Speaker (Planned) Jerald Edward Jones
Abstract Scope “Mirror Welding” as it is often called, requires the welder to hold a mirror so that he/she can “see” around an obstacle in order to produce a weld in a location that is not visible by the welder. In smaller ships, or more complex larger ships (i.e. Navy), as well as in large structural applications, this situation can occur with some degree of frequency, such that a welder who has experience welding by looking at the weld in a mirror is often called upon to perform this “circus trick” (to which it is often referred). It is that, a trick, even though it is a serious weld, holding a welding torch in one hand and a mirror in the other and then trying to weld in a location that you cannot see, except in the mirror. If you move the torch right, your perception is that you are moving to the left. Nothing about this task is “typical” or “ordinary” and many people are incapable of performing a mirror weld. Even people who have perfected this skill often have difficulty making ideal welds under these circumstances. Until now, mirror welding was a skill that most shipyards had, but only one or two welders. This proposed technology will enable all of the skilled welders in a shipyard to fairly easily become skilled at “mirror” welding. The goal is to allow the welder to digitally “adjust” the image so that it is the most comfortable for them to use for welding. The image will be able to rotate, flip vertically or horizontally, even be shown as a “mirror” image for those welders who are already highly skilled “mirror welders”. The principle cost of “mirror” welding is not only the cost of the welding, it is also the cost of repair and re-work. Those welds made in tight or uncomfortable positions while holding a mirror – both hands occupied – are difficult, at best, even for the most skilled. It is not unusual for there to be a momentary problem with reach, or visibility, or body movement, which can result in the formation of a weld defect. The technology of using video data, rather than the current practice of through-a-dark-lens viewing, opens up the possibility to significantly enhance the entire field of manual welding. Today, the welder must get their head into a position to see the weld, which can be uncomfortable and awkward. If the lens is dark enough to guarantee no eye damage it can be too dark to see all of the details of the weld joint. Because of the great proliferation of video camera and video processing technology, especially Artificial Intelligence based methods, including Augmented and Virtual Reality, the software and hardware can have very significant image enhancement ability. A Navy ManTech project EOC-PSU produced an analysis that showed that using a video equipped helmet could save as much as $4M annually for a typical shipyard, producing Navy ships. The project has successfully embedded a very small camera (in a Miller Bernard BTB MIG Gun, )T Series Straight Handle, 400A, 15 ft., Medium 60° Fixed Neck, 1/16 in. – a common heavy duty welding gun). The camera is cooled and protected from spatter, and has demonstrated the ability to transmit a high quality, high speed video image of the welding wire, welding arc, and weld pool, as well as key features of the weld joint. Successful butt and fillet welds have been produced and provided a excellent video images. The video images are displayed on a video screen which has been positioned in the welding helmet. Welds produced with this system meet basic welding quality requirements, for shipbuilding. So, it has been demonstrated that a camera can be integrated into a welding torch, that camera can transmit video images which are sufficient in order to produce a weld, and, that the “lag” in the video image is small enough that the human welder can produce a weld which meets the quality requirements. Finally, the system can provide a complete video record of every weld, which is stored in the welders helmet, and is downloaded at the end of the shift while the batteries in the helmet are being re-charged. In addition, a modified ArcSentry weld parameter monitoring system is also included in the overall welding system and the real-time parameter data can be displayed as a function of time and/or distance along the weld to facilitate a weld quality assessment of the weld.
Proceedings Inclusion? Definite: Other

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

101st Year of the American Welding Society: Changes in Welding & Outlook
Additive Manufacture of the First Concentric Reduction Sleeve Used in the Brazilian Oil and Gas Industry
Additive Manufacturing Using Semi-solids
Advances in Robotic Arc DED AM for Shipbuilding
Aluminum Root Pass Quality Using Rotating Electrode GMAW on Ceramic Abstract
An Efficient Part-scale Model to Predict Distortion on Overhang Structure in Laser Powder Bed Fusion Additive Manufacturing
An Overview of LME Cracking in Advanced High Strength Automotive Steels
Analysis of Dynamic Evolution of Weld Pool for the Real-time Monitoring of Penetration Using Deep Learning
Avoiding Tool Failure and Defects in Friction Stir Welding Using Machine Learning
Bondline Properties in High Frequency Welding of Steels
Building a Digital Twin for Welding Process Monitoring, Visualization and Control Based on Deep Learning
Characterization of the Fourth Generation of Nickel-Chromium Welding Products for Nuclear Service
Chipping Study of Friction Element Welding
Computational Modeling on Defect Formation during Self-reacting Friction Stir Welding
Copper Foil Welding for Battery Manufacturing
Correlating Laser Power and Microstructural Properties of Additively Manufactured Ti-6Al-4V Fabricated by Directed Energy Deposition
Creep Strength Variation in Simulated ICHAZs of Grade 91 Steel
Design of an Austenitic Steel Weldment System Using ICME
Development of Industry 4.0 Software for Arc-welding Energy Monitoring and Traceability
Development of Interlayer Technology to Join Advanced Materials for the Transportation Industry
Development, Optimization, and Mechanical Testing of ER80S-G Girth Welds on Internally Clad API 5L Grade X65 Pipes
Dissimilar Joining of Carbon Fiber Reinforced Composite to Magnesium Alloy by Friction Self-Piercing Riveting Process
Effect of Aluminum on Primary Carbides in Chromium Carbide Overlays
Effect of Chemical Composition of Welding Consumable on Slag Formation and Weld Corrosion Resistance
Effect of Heating Rate on Austenite Formation in a Low Carbon Microalloyed Steel
Effect of Phase Transformations on Mechanical Properties of Ti Free Grade 300 Maraging Steel Manufactured by Laser Powder Bed Fusion (LPBF)
Electron Beam Brazing of Stainless Steel Using NIORO Filler Metal
Evaluation of Braze Joints for Hydrogen Purification Diffuser
Failure Analysis: Evaluating a Low Strength Solder Joint
Fundamentals and Techniques for High-speed Imaging of Welding
High Deposition Gas Metal Arc Variants for Directed Energy Deposition Additive Manufacturing
High Efficient Modification of Arc Welding Processes via Modeling and Sensing Weld Pool Behaviors
High Penetration Buried Arc Gas Metal Arc Welding for Shipyard Steel Plate Fabrication
Hybrid Laser Welding on API 5L Pipeline Steels
Hyper-duplex Stainless Steel Intermetallic Precipitation Behavior during Cladding
Improper Weld Field Fabrication Caused Premature Failure
In-situ Measurement and Numerical Simulation for Linear Friction Welding of Complex Titanium Structures
In-situ Synchrotron Diffraction Measurement of Solidification Behavior during Laser Welding of Multi-principal-component Alloy
Induction Heating-assisted Friction Stir Welding in Low Carbon Steel Plates
Influence of Composition on the Solidification and Mechanical Properties of HP-modified Heat-resistant Austenitic Stainless Steels
Influence of Cooling Rate on Microstructure Formation in Rapid Solidification of Ni2MnGa Alloy
Influence of Hydrogen on the Softened HAZ in Various Carbon Steel Welds
Integrated Computational Materials Engineering (ICME) Techniques to Enable a Material-informed Digital Twin Prototype for Marine Structures
Integrated Modeling of Multi-process Automotive Lap Joining – Part 3: Microstructure and Mechanical Properties
Investigation of a Curly Toolpath in Friction Stir Welding
Investigation of Laves Phase Formation in Inconel 718 Fabricated by Laser Powder Bed Fusion
Investigation of Thermally Assisted Friction Element Welding
Joining Dissimilar Metals of DP590 Steel and AZ31B Magnesium Sheets by Ultrasonic Spot Welding
Low-cycle Fatigue Evaluations of Ni-steel Dissimilar Joints for Coke Drum Welding Repairs
Machine Learning for Automatic Recognition of Microstructures
Mechanical Properties Assessment of Carbon and Low-alloy Steel Parts Built by GMA-DED
Mechanistic Models and Machine Learning to Mitigate Common Defects in Metal Printing
Metallic Powder Core Tubular Wire Development for Additive Manufacturing
Microstructural and Mechanical Property Characterization of Reaction Synthesis Aluminum Metal Matrix Composites Produced by Additive Manufacturing
Microstructure and Mechanical Properties of Intercritical-treated Grade 91 Steel
Mitigation of Liquid Metal Embrittlement in Galvannealed AHSS Welds Using High Entropy Alloy Filler
Modal Analysis of Ultrasonic Welding to Enable Multi-spot Dissimilar Material Joining
Modeling and Comparing Human Welder’s Operation Between Stereo Camera and Virtual Reality
Modeling of In-situ Tempering of a Creep Resistant Ferritic Martensitic Steel during Multi-layer Additive Manufacturing
Modeling of Mash Seam Welding Using Improved Electro-thermo-mechanical Simulation
Modelling of Laser Cladding Using Gaussian Heat Source Profile and Verification with Experimental Results
Multi-scale and Multi-physics Modeling of Process-microstructure-property Relationship in Metal Additive Manufacturing
New Approaches in Friction Welding Advanced PM Nickel Base Superalloys
Numerical Study on Heat Transfer Mechanisms in Electric Arc Columns
Optimization of Tool Path and Microstructure in Large Scale Metal Additive Manufacturing with Multi-heat Sources
Phase Transformation Analysis and Microstructural Characterization of the Heat Affected Zone in Grade 92 Steel Welds
Process Control Using Predictive Equations for Zero Programming Laser Cladding Facility
Process, Microstructure and Fracture Mode of Magnesium to Steel Dissimilar Metal Spot Joints
Pulsed-arc Welding of Battery Tabs for Vehicle Electrification
PWHT of 347SS Weldments for Thermal Energy Storage Concentrating Solar Power Applications
Real-time Prediction of Weld Penetration from Dynamic Weld Pool-arc Images Deep Learning Based
Recent Developments in Metal Additive Manufacturing
Research and Development of a Novel TIG Welding Technology for Joining Thin Sheets Applying in Metal Forming Field
Residual Stress Measurement on High-strength Steel Panels for Shipbuilding Application
Resistance Spot Welding Challenges, Root Causes, and Suggested Welding Practices When Welding 3rd Generation AHSS
Role of Retained Austenite in Mechanical Response of Additively Manufactured 17-4 PH Stainless Steel
SMART Camera in the Welding Torch for Manual Welding Quality and Productivity
State-of-the-art of Underwater Wet Welding Practice
Strain Ageing of Inconel 740H and 347H
Suitability of Using Thin Wire in Wire Arc Additive Manufacturing (GMA-DED)
Sulfur Implantation in Alloy 690 for the Study of Ductility-dip Cracking
Surface Modification via Metal Deposition and Selective Alteration
Surface Treatment of 3-D Printing Parts
Temper Bead Welding
The Correlation of Hardness to Toughness and the Superior Low Temperature Impact Properties of Martensite in RPV Steels Applied to Temper Bead Qualification
The Role of Inclusions in Duplex Stainless Steels Produced Using Laser-based Directed Energy Deposition Additive Manufacturing
Universal Representation of Arc Shape and Arc Column Characteristics for DC Electric Arcs Burning in Argon and Helium
Variation in Microstructure and Properties in the Heat Affected and Fusion Zones of Low-density Fe-Mn-Al-C Steel Welds
Variations in Microstructure and Mechanical Properties with Solidification Mode in L-PBF 316L
Welding of FeMnAl High-manganese Lightweight Steel

Questions about ProgramMaster? Contact programming@programmaster.org