ProgramMaster Logo
Conference Tools for Materials Science & Technology 2020
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting Materials Science & Technology 2020
Symposium Additive Manufacturing: Equipment, Instrumentation and Measurement
Presentation Title Analysis of In-Situ, 3D Surround Digital Image Correlation with Mapped Thermography in Directed Energy Deposition
Author(s) James C. Haley, Samuel Leach, Brian Jordan, Ryan Dehoff, Vincent Paquit
On-Site Speaker (Planned) James C. Haley
Abstract Scope In Directed Energy Deposition (DED) AM, inherent residual stress and distortion are introduced by a complex and time-variable thermal field, which poses a serious barrier to widespread adoption of the process. Using an array of low cost visible and infrared cameras, we show that these distortions and temperature variations can be measured in-situ with full surround 3D using Digital Image Correlation (DIC), for any printed geometry. Such measurements provide rapid feedback for process optimization, as it allows direct measurement and estimation of a number of different key process variables. Capabilities and limitations of the system are discussed, and compare results to simulation and ex-situ measurements for sample geometries.

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

A New Preheating Method for Electron Beam Powder Bed Fusion, Opening a Wider Range of Processable Feedstocks
Adaptive Multi-Beam Laser Additive Manufacturing (AMB-LAM) Technology: Instrumentation and Processes Development and Demonstration
Analysis of In-Situ, 3D Surround Digital Image Correlation with Mapped Thermography in Directed Energy Deposition
Benefits of In-situ Monitoring in Metal Additive Manufacturing
Characterization of 3D-printed Metals with Ultrasonic Technique
Combining In-situ Monitoring and X-ray Computed Tomography to Assess the Quality of Parts Manufactured by Powder Bed Fusion
Dynamics of Laser-powder-metal Interactions in L-PBF Captured by High Speed Imaging
In-Process Quality Control and Optimization for Ceramic 3D Printing
Investigations on Optical Emissions and Their Relation to Processing Parameters and Processing Regimes in The Laser Powder Bed Fusion Process
Machine Learning Enabled Acoustic Monitoring for Flaw Type Detection in Laser Powder Bed Additive Manufacturing
Mechanical In-situ µCT Testing of Lattice Structures Manufactured by Selective Laser Melting
Optical Emission Sensing for Laser-based Additive Manufacturing – What Are We Actually Measuring?
Polyspectral Analysis for In-situ Prediction of Deviations in Laser Powder Bed Fusion Additive Manufacturing
Real Time Monitoring of Electron Emissions during Electron Beam Powder Bed Fusion and Process Control for Arbitrary Geometries and Toolpaths
Using In-situ Process Monitoring Data to Identify Defective Layers in TI-6AL-4V Additively Manufactured Porous Biomaterials

Questions about ProgramMaster? Contact programming@programmaster.org