ProgramMaster Logo
Conference Tools for 2021 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2021 TMS Annual Meeting & Exhibition
Symposium Characterization of Materials through High Resolution Imaging
Presentation Title High Speed, High Resolution, High Temperature 3D Imaging of Spacecraft Materials during Atmospheric Entry Conditions
Author(s) Dilworth Y. Parkinson, Harold S Barnard, Alastair A MacDowell, Sam Schickler, Shawn Shacterman, Talia Benioff-White, Kara Levy, Francesco Panerai, Collin Foster, Benjamin Ringel, Christian Schlepuetz
On-Site Speaker (Planned) Dilworth Y. Parkinson
Abstract Scope During atmospheric entry, spacecraft experience extreme conditions, and it is important to better understand how materials in current use by NASA behave under these conditions, to work towards developing new materials. We performed high speed, high resolution, high temperature 3D imaging--using synchrotron propagation-based phase contrast microCT--of spacecraft heat shield and parachute materials under conditions meant to simulate re-entry. The data was reconstructed and analyzed using machine learning approaches on high performance computing systems, and simulations of each experimental run were performed to check the ability of the models to capture all of the relevant features observed in the experiments. In this presentation, both the experimental and computational methods for this work will be described, and both visual and quantitative comparisons of experiment and simulation will be shown.
Proceedings Inclusion? Planned:
Keywords Computational Materials Science & Engineering, High-Temperature Materials, Characterization

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

Adaptive Machine for 3D Bragg Coherent Diffraction Imaging Reconstructions
AI-enabled High-throughput Three-dimensional Ptychographic Imaging
Confocal Bragg Ptychography for 3D Mapping of Bulk Specimens
Evaluation of TATB Crystal Morphology for Predicting Sensitivity Using X-ray Computed Tomography
Exploiting Machine Learning Techniques in X-ray Ptychography
Grain Orientation Mapping via Laue Peak Segregation
High Speed, High Resolution, High Temperature 3D Imaging of Spacecraft Materials during Atmospheric Entry Conditions
ID01 in Light of the ESRF-EBS
Image-based Simulation of Permeability and Image-to-Mesh Conversion of X-ray Tomographic Images of a Nickel Foam
Imaging Materials on the Run: Shedding Light on Fast Structural Processes Using Time-resolved Synchrotron X-ray Tomographic Microscopy
Imaging Phase Transitions of Quantum Materials with Bragg Coherent X-ray Diffraction
Improve Phase Retrieval Performance in Bragg CDI by Simultaneous Reconstruction of Multiple Diffraction Peaks
In Situ and Operando 3D Nano-imaging for Materials Science at the ESRF
Investigating the Early Life on Earth with Nanoscale X-ray Coherent Imaging
Laboratory and Synchrotron-based X-ray Tomographic Imaging during In Situ Loading of Materials
Magnetic Correlations and Time Fluctuations in Assemblies of Fe3O4 Nanoparticles Probed via X-rays
Megahertz X-ray Microscopy for Imaging High-speed Phenomena in Opaque Materials
Mesoscale Defect Dynamics in the Bulk with Time-resolved Dark-field X-ray Microscopy
Microstructural Characterization and Mechanical Behavior of a Meteorite Using Correlative Microscopy
Multi-peak Phase Retrieval for Coherent X-ray Diffraction Imaging at High Energies
Near-surface Optical Characterisation of Ion Implantation in Titanium Oxide Thin Films
Optimization Based Approach for 3D Alignment in X-ray Nano-tomography
Ptychographic Inversion with Deep Learning Network and Automatic Differentiation
Ptychographic X-ray Computed Tomography
Quantitative Data Analysis of Dynamic Tomography Data with Motion Artifacts
Retrieving the Full 3D Strain Tensor for Nanoscale Materials Science Applications at 34-ID-C
Study of Structure of Beam-sensitive Supported Nanoparticle Catalysts by Low-dose High Resolution Phase Contrast Imaging
The Fourth is Strong in These Ones!
Using Phase Field Simulations to Train Convolutional Neural Networks for Segmentation of Experimental Materials Imaging Datasets
Using the Rotation Vector Base Line Electron Back Scatter Diffraction (RVB-EBSD) Method to Characterize Single Crystal Cast Microstructures
X-ray Based Nanodiffraction to Study Strain in Materials for Nuclear Energy
X-ray Imaging of Three-dimensional Magnetic Systems and Their Dynamics

Questions about ProgramMaster? Contact programming@programmaster.org