ProgramMaster Logo
Conference Tools for 2021 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2021 TMS Annual Meeting & Exhibition
Symposium Characterization of Materials through High Resolution Imaging
Presentation Title Megahertz X-ray Microscopy for Imaging High-speed Phenomena in Opaque Materials
Author(s) Valerio Bellucci, Tokushi Sato, Pablo Villanueva Perez, Jozef Ulicny, Wataru Yashiro, Henry N. Chapman, Adrian Mancuso, Patrik Vagovič
On-Site Speaker (Planned) Valerio Bellucci
Abstract Scope X-ray phase-contrast microscopy with a sampling rate of 1.128 MHz was demonstrated at the European X-ray Free-Electron Laser with micrometre scale spatial resolution. The contrast and spatial resolution attained were superior in comparison to previous synchrotron MHz microscopy due to the high brilliance of the source. This work opens up the possibility of imaging dynamic stochastic phenomena in opaque systems with object velocities up to a few kilometres per second at nanosecond to microsecond time scales by using XFEL sources. Modern emerging technologies, such as additive manufacturing, bioprinting, and new material production, will benefit from this novel metrology tool to probe fundamental high-speed dynamics occurring in such systems. The high brilliance of modern XFEL sources paves the way for future developments of this technology with the introduction of 3D MHz microscopy for volumetric imaging of fast phenomena in opaque samples.
Proceedings Inclusion? Planned:

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

Adaptive Machine for 3D Bragg Coherent Diffraction Imaging Reconstructions
AI-enabled High-throughput Three-dimensional Ptychographic Imaging
Confocal Bragg Ptychography for 3D Mapping of Bulk Specimens
Evaluation of TATB Crystal Morphology for Predicting Sensitivity Using X-ray Computed Tomography
Exploiting Machine Learning Techniques in X-ray Ptychography
Grain Orientation Mapping via Laue Peak Segregation
High Speed, High Resolution, High Temperature 3D Imaging of Spacecraft Materials during Atmospheric Entry Conditions
ID01 in Light of the ESRF-EBS
Image-based Simulation of Permeability and Image-to-Mesh Conversion of X-ray Tomographic Images of a Nickel Foam
Imaging Materials on the Run: Shedding Light on Fast Structural Processes Using Time-resolved Synchrotron X-ray Tomographic Microscopy
Imaging Phase Transitions of Quantum Materials with Bragg Coherent X-ray Diffraction
Improve Phase Retrieval Performance in Bragg CDI by Simultaneous Reconstruction of Multiple Diffraction Peaks
In Situ and Operando 3D Nano-imaging for Materials Science at the ESRF
Investigating the Early Life on Earth with Nanoscale X-ray Coherent Imaging
Laboratory and Synchrotron-based X-ray Tomographic Imaging during In Situ Loading of Materials
Magnetic Correlations and Time Fluctuations in Assemblies of Fe3O4 Nanoparticles Probed via X-rays
Megahertz X-ray Microscopy for Imaging High-speed Phenomena in Opaque Materials
Mesoscale Defect Dynamics in the Bulk with Time-resolved Dark-field X-ray Microscopy
Microstructural Characterization and Mechanical Behavior of a Meteorite Using Correlative Microscopy
Multi-peak Phase Retrieval for Coherent X-ray Diffraction Imaging at High Energies
Near-surface Optical Characterisation of Ion Implantation in Titanium Oxide Thin Films
Optimization Based Approach for 3D Alignment in X-ray Nano-tomography
Ptychographic Inversion with Deep Learning Network and Automatic Differentiation
Ptychographic X-ray Computed Tomography
Quantitative Data Analysis of Dynamic Tomography Data with Motion Artifacts
Retrieving the Full 3D Strain Tensor for Nanoscale Materials Science Applications at 34-ID-C
Study of Structure of Beam-sensitive Supported Nanoparticle Catalysts by Low-dose High Resolution Phase Contrast Imaging
The Fourth is Strong in These Ones!
Using Phase Field Simulations to Train Convolutional Neural Networks for Segmentation of Experimental Materials Imaging Datasets
Using the Rotation Vector Base Line Electron Back Scatter Diffraction (RVB-EBSD) Method to Characterize Single Crystal Cast Microstructures
X-ray Based Nanodiffraction to Study Strain in Materials for Nuclear Energy
X-ray Imaging of Three-dimensional Magnetic Systems and Their Dynamics

Questions about ProgramMaster? Contact programming@programmaster.org