ProgramMaster Logo
Conference Tools for 2024 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2024 TMS Annual Meeting & Exhibition
Symposium Refractory Metals 2024
Presentation Title Phase Stability in the Tantalum-nitrogen System From First Principles
Author(s) Jeremiah Thomas, Anton Van der Ven
On-Site Speaker (Planned) Jeremiah Thomas
Abstract Scope Tantalum nitrides are used as diffusion barriers in electronics and are also of interest due to their extremely high melting points. However, despite a range of computational and experimental studies, the tantalum-nitrogen system lacks an up-to-date and accurate phase diagram. In addition to recently discovered stable structures, there are many metastable and contested structures. For example, the 1:1 rocksalt phase of TaN is reported as a metastable structure in experimental literature but is dynamically unstable when simulated. Proposed stabilization mechanisms include cation and anion vacancies, antisite defects, and deformation to lower-symmetry structures. The ambiguity in phase stability makes this system a good candidate for density functional theory (DFT) calculations. We have applied DFT and Monte Carlo simulations to a large set of defected structures generated by our cluster expansion code, CASM, in order to create the phase diagram of the tantalum-nitrogen system.
Proceedings Inclusion? Planned:
Keywords Computational Materials Science & Engineering, Phase Transformations, High-Temperature Materials

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

Alloy Designs and Manufacturing of High Temperature Mo-Si-B Alloys
Assessment of Microstructural and Compositional Evolution and Stability in the Ta-(Nb,Mo,W)-V System
B-10: Influence of Radiation on the Oxidation Behavior of Molybdenum
Bcc-Superalloys: Refractory Metal bcc Matrix, Reinforced by Ordered-bcc Intermetallic Precipitates
Controlling the Sources of Interstitial Constituents in Refractory Complex Concentrated All
Destructive Oxidation of Ta and its Alloys at Temperatures up to 1000 °C
Development of a Cr-Mo-Si Refractory Metal Alloy for High (>1100°C) Temperature Service
Development of a Novel Ba2YZrO5F Refractory: Synthesis, Stability Study and Interaction with Pure Ti
Discovery of Oxidation-Resistant Refractory Compositionally Complex Alloys Through High-throughput Calculations and Experiments
Effects of Strain Path and Surface Pinning on Recrystallization in Deformed High-purity Niobium
Electric Field Activated Sintering, Densification Behavior and Properties of Commercial Nb Alloy(C103)
Experimental Investigation on Isothermal Section of ZrO2-SrO-BaO System at 1673K
High-throughput Characterization of Dynamic Tensile Failure in Pure Niobium and Niobium-titanium Alloy
High-throughput Design, Synthesis, and Characterization of Refractory Multi-principal Element Alloys (MPEAs)
High Temperature Deformation of Refractory Alloys
Influence of Doping on the Scale Growth and Oxidation Resistance of CrTaO4 Forming Alloys
New Niobium Alloys with High Strength and Toughness for High Temperature Applications
Novel Refractory High-Entropy Metal-ceramic Composites with Superior Mechanical Properties
Phase Stability in the Tantalum-nitrogen System From First Principles
Recrystallization, Tensile Ductility, and Flow Stress of TZM and Mo-La Alloys at 1500 and 1700 °C
Sintering and Densification Kinetics of Nb-W Based Alloys by Electric Field Activated Sintering
Tailored Multi-phase Refractory Multiple-principal-Element Alloy Composites
The Fundamentals of Recrystallization in Binary Niobium Alloys
The Study of High Temperature Deformation of Model Nb-Si-based Alloys at Ultra-high Temperatures
Thermal Stability of Rolled Tungsten Plates at Temperatures between 1100 °C and 1400 °C
Thermo-mechanical Processing of Refractory Multi principal Element Alloys
Thermomechanical Processing Maps and Microstructure Characterization of Cr-containing Refractory Complex Concentrated Alloys
Understanding the Role of Thermally Activated Dislocation Motion on the Brittle to Ductile Transition in BCC Metals
Utilizing Grain Boundary Segregation Engineering for Nanostructured Tungsten Thin Films

Questions about ProgramMaster? Contact programming@programmaster.org