ProgramMaster Logo
Conference Tools for 2024 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2024 TMS Annual Meeting & Exhibition
Symposium Refractory Metals 2024
Presentation Title Development of a Cr-Mo-Si Refractory Metal Alloy for High (>1100°C) Temperature Service
Author(s) Lisa Koliotassis, Emma M. H. White, Mathias C. Galetz
On-Site Speaker (Planned) Lisa Koliotassis
Abstract Scope Chromium is a promising base element for new high temperature (HT) alloys due to its low density, high melting point, high thermal conductivity, availability and low cost. The remaining barriers to applying Cr, such as the high ductile-to-brittle transition temperature (DBTT) and poor HT corrosion properties (volatile species and nitridation) must be addressed by alloying. Silicon additions were shown to be beneficial for low oxidation rates, precipitation hardening and for forming a nitridation-resistant intermetallic phase (A15). Molybdenum alloying can improve the HT mechanical and corrosion properties. The influence of Mo additions (up to 40 at.%) on Cr-xSi alloy microstructures was studied via arc-melted buttons. Suitable annealing treatments were developed. The oxidation behavior at 1200°C and RT hardness were analyzed as a function of Mo content and heat treatment. Scale up by a powder metallurgical processing route was explored.
Proceedings Inclusion? Planned:
Keywords Phase Transformations, Other, Other

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

Alloy Designs and Manufacturing of High Temperature Mo-Si-B Alloys
Assessment of Microstructural and Compositional Evolution and Stability in the Ta-(Nb,Mo,W)-V System
B-10: Influence of Radiation on the Oxidation Behavior of Molybdenum
Bcc-Superalloys: Refractory Metal bcc Matrix, Reinforced by Ordered-bcc Intermetallic Precipitates
Controlling the Sources of Interstitial Constituents in Refractory Complex Concentrated All
Destructive Oxidation of Ta and its Alloys at Temperatures up to 1000 °C
Development of a Cr-Mo-Si Refractory Metal Alloy for High (>1100°C) Temperature Service
Development of a Novel Ba2YZrO5F Refractory: Synthesis, Stability Study and Interaction with Pure Ti
Discovery of Oxidation-Resistant Refractory Compositionally Complex Alloys Through High-throughput Calculations and Experiments
Effects of Strain Path and Surface Pinning on Recrystallization in Deformed High-purity Niobium
Electric Field Activated Sintering, Densification Behavior and Properties of Commercial Nb Alloy(C103)
Experimental Investigation on Isothermal Section of ZrO2-SrO-BaO System at 1673K
High-throughput Characterization of Dynamic Tensile Failure in Pure Niobium and Niobium-titanium Alloy
High-throughput Design, Synthesis, and Characterization of Refractory Multi-principal Element Alloys (MPEAs)
High Temperature Deformation of Refractory Alloys
Influence of Doping on the Scale Growth and Oxidation Resistance of CrTaO4 Forming Alloys
New Niobium Alloys with High Strength and Toughness for High Temperature Applications
Novel Refractory High-Entropy Metal-ceramic Composites with Superior Mechanical Properties
Phase Stability in the Tantalum-nitrogen System From First Principles
Recrystallization, Tensile Ductility, and Flow Stress of TZM and Mo-La Alloys at 1500 and 1700 °C
Sintering and Densification Kinetics of Nb-W Based Alloys by Electric Field Activated Sintering
Tailored Multi-phase Refractory Multiple-principal-Element Alloy Composites
The Fundamentals of Recrystallization in Binary Niobium Alloys
The Study of High Temperature Deformation of Model Nb-Si-based Alloys at Ultra-high Temperatures
Thermal Stability of Rolled Tungsten Plates at Temperatures between 1100 °C and 1400 °C
Thermo-mechanical Processing of Refractory Multi principal Element Alloys
Thermomechanical Processing Maps and Microstructure Characterization of Cr-containing Refractory Complex Concentrated Alloys
Understanding the Role of Thermally Activated Dislocation Motion on the Brittle to Ductile Transition in BCC Metals
Utilizing Grain Boundary Segregation Engineering for Nanostructured Tungsten Thin Films

Questions about ProgramMaster? Contact programming@programmaster.org