ProgramMaster Logo
Conference Tools for 2024 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2024 TMS Annual Meeting & Exhibition
Symposium Irradiation Testing: Facilities, Capabilities, and Experimental Designs
Presentation Title Deployment and Testing of a Fiber-based Instrument for In-reactor Thermal Property Measurements at MIT Research Reactor
Author(s) Zilong Hua, Caleb Picklesimer, Robert Schley, Colby Jensen, Austin Fleming, Weiyue Zhou, Michael Short, David Carpenter
On-Site Speaker (Planned) Zilong Hua
Abstract Scope The thermal conductivity of nuclear fuels is a critical physical property that is directly related to reactor efficiency and safety. During the reactor operation, all sorts of microstructure defects will be generated by neutron irradiation and significantly reduce the thermal conductivity of fuels. Currently, experimental efforts to capture such thermal conductivity degradation is primarily through post-irradiation-examination (PIE). It has been speculated that point defects may anneal or cluster into larger scale defects prior to PIE, making the ex-situ measured properties different from the ones measured in-situ. Here we present the latest testing results of a fiber-based photothermal radiometry instrument that enables in situ thermal conductivity measurements of nuclear fuels. The performance and survivability of the instrument is tested at MIT research reactor.
Proceedings Inclusion? Planned:
Keywords Characterization, Nuclear Materials,

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

Accelerated Irradiation Creep Testing of Structural Materials for Advanced Reactors
Accelerating the Pace of Radiation Damage Experiments through Novel Sample Geometries, Beam Line Architecture, and Machine Learning Analysis
Advancing Post-irradiation Examination of Structural Materials in INL Facilities
Advancing Thermo-physical Property Characterization Techniques and Methods for Irradiated Nuclear Fuels
Atom Probe Tomography Examinations of Bulk Zircaloy Irradiated at Nominally 410°C
Atom Probe Tomography (APT) Characterization of Annular U-Zr Metallic Fuel Cladded with HT-9
Challenges and Solutions for Fast Neutron Irradiation of Bulk Material Specimens
Comparison between Ion and Neutron Irradiated Tungsten to Simulate Damage in Commercial Nuclear Fusion Reactors
Deployment and Testing of a Fiber-based Instrument for In-reactor Thermal Property Measurements at MIT Research Reactor
Developing Irradiation Experiments to Enable Characterization and Qualification of Advanced Nuclear Materials
E-21: High-Throughput Study of Temperature Effects on Void Swelling in Ion Irradiated SS304
Electron Energy Loss Spectroscopy (EELS) Characterization of Fuel Cladding Chemical Interaction (FCCI) Region in U-Zr Metallic Fuel Cladded with HT-9
Harnessing HFIR Neutron Irradiations: Innovative Experiments and Standardized Capabilities
Increasing Ion Irradiation Sample Throughput with Gas Implantation Gradients
INL’s Holistic Approach to Post-irradiation Examination of Nuclear Fuel Systems
INL’s Mission Incorporating Neutrons in Post-irradiation Examination of Nuclear Materials
Investigating Water Ice Under Ion Irradiation for Future Exploration of Europa
Irradiation Testing of 316H Stainless Steel at Oak Ridge National Laboratory
Irradiation Vehicles for Materials Separate Effects Experiments Supporting the Tritium Modernization Program
Measurement of Hydrogen Vapor Pressure Over Two-phase Zirconium/Zirconium Hydride Material between 275°C and 400°C Under the Effects of Neutron Irradiation
Neutron Irradiation as a Function of Temperature – Experiment (NIFT-E)
Nuclear Fuel Salt Irradiation and Post-irradiation Processing Capabilities at The Ohio State University Research Reactor
Post-irradiation Examination of AGR-5/6/7 TRISO Fuel with Micro X-ray Computed Tomography
The Role of Nuclear Science User Facilities in Nuclear Energy Materials Research and Development
Ultrafast-Electron-diffraction Studies of Radiation-damaged Materials: An Example on the Melting Behavior of He-implanted W
Westinghouse Hot Cell Facility and Laboratories

Questions about ProgramMaster? Contact programming@programmaster.org