ProgramMaster Logo
Conference Tools for 2024 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2024 TMS Annual Meeting & Exhibition
Symposium Irradiation Testing: Facilities, Capabilities, and Experimental Designs
Presentation Title Atom Probe Tomography (APT) Characterization of Annular U-Zr Metallic Fuel Cladded with HT-9
Author(s) Arnold Pradhan, Sohail Shah, Mukesh Bachhav, Tiankai Yao, Luca Capriotti, Indrajit Charit
On-Site Speaker (Planned) Arnold Pradhan
Abstract Scope Annular metallic fuel pins offer numerous advantages over solid fuel pin design from the ability to attain high burnups to easier disposal at the end of the fuel cycle. The performance of annular metallic fuels has been an ongoing discussion. High resolution characterization provides vital information in investigating the fuel performance by studying the microstructure and redistribution of elements. Atom probe tomography and transmission electron microscopy offers extensive capabilities in retrieving information at the nanoscale. Both have become a beneficial tool in correlating different factors while understanding the irradiation effects on a material. A prototype annular U-10Zr metallic fuel pin was irradiated in the facility at Idaho National Laboratory (INL) and characterized to elucidate Zr redistribution as well as burnup measurement using isotopic analysis of 235U,236U, 238U and 239 Pu. Such studies provide correlation between fission product distribution and burnup analysis across fuel pin.
Proceedings Inclusion? Planned:
Keywords Characterization, Nuclear Materials, Other

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

Accelerated Irradiation Creep Testing of Structural Materials for Advanced Reactors
Accelerating the Pace of Radiation Damage Experiments through Novel Sample Geometries, Beam Line Architecture, and Machine Learning Analysis
Advancing Post-irradiation Examination of Structural Materials in INL Facilities
Advancing Thermo-physical Property Characterization Techniques and Methods for Irradiated Nuclear Fuels
Atom Probe Tomography Examinations of Bulk Zircaloy Irradiated at Nominally 410°C
Atom Probe Tomography (APT) Characterization of Annular U-Zr Metallic Fuel Cladded with HT-9
Challenges and Solutions for Fast Neutron Irradiation of Bulk Material Specimens
Comparison between Ion and Neutron Irradiated Tungsten to Simulate Damage in Commercial Nuclear Fusion Reactors
Deployment and Testing of a Fiber-based Instrument for In-reactor Thermal Property Measurements at MIT Research Reactor
Developing Irradiation Experiments to Enable Characterization and Qualification of Advanced Nuclear Materials
E-21: High-Throughput Study of Temperature Effects on Void Swelling in Ion Irradiated SS304
Electron Energy Loss Spectroscopy (EELS) Characterization of Fuel Cladding Chemical Interaction (FCCI) Region in U-Zr Metallic Fuel Cladded with HT-9
Harnessing HFIR Neutron Irradiations: Innovative Experiments and Standardized Capabilities
Increasing Ion Irradiation Sample Throughput with Gas Implantation Gradients
INL’s Holistic Approach to Post-irradiation Examination of Nuclear Fuel Systems
INL’s Mission Incorporating Neutrons in Post-irradiation Examination of Nuclear Materials
Investigating Water Ice Under Ion Irradiation for Future Exploration of Europa
Irradiation Testing of 316H Stainless Steel at Oak Ridge National Laboratory
Irradiation Vehicles for Materials Separate Effects Experiments Supporting the Tritium Modernization Program
Measurement of Hydrogen Vapor Pressure Over Two-phase Zirconium/Zirconium Hydride Material between 275°C and 400°C Under the Effects of Neutron Irradiation
Neutron Irradiation as a Function of Temperature – Experiment (NIFT-E)
Nuclear Fuel Salt Irradiation and Post-irradiation Processing Capabilities at The Ohio State University Research Reactor
Post-irradiation Examination of AGR-5/6/7 TRISO Fuel with Micro X-ray Computed Tomography
The Role of Nuclear Science User Facilities in Nuclear Energy Materials Research and Development
Ultrafast-Electron-diffraction Studies of Radiation-damaged Materials: An Example on the Melting Behavior of He-implanted W
Westinghouse Hot Cell Facility and Laboratories

Questions about ProgramMaster? Contact programming@programmaster.org