ProgramMaster Logo
Conference Tools for MS&T22: Materials Science & Technology
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting MS&T22: Materials Science & Technology
Symposium Manufacturing and Processing of Advanced Ceramic Materials
Presentation Title Investigation of Lamination Approaches for SiC-filled Thermoplastic Polymer Blends
Author(s) Olivia Brandt, Rodrigo Orta, Rodney Trice, Jeffrey Youngblood
On-Site Speaker (Planned) Olivia Brandt
Abstract Scope Ceramic co-extrusion is a ceramic forming technique where a feedrod of a ceramic/polymer mixture is heated and extruded through a reduced cross-section, reducing the size but retaining the symmetry of the original feedrod. The co-extrusion process often involves a rebundling of ceramic/polymer extrudates or a “lamination” step via warm pressing to form the final component. Lamination is critical to the overall strength as any delaminations between adjacent exudates will manifest as cracks in the final sintered body. The aim of this presentation is to describe the mechanisms that cause delamination between warm-pressed ceramic-filled thermoplastic extrudates and to present approaches to mitigate this delamination. The approaches studied varied the thermoplastic blend compositions, the surface topography (e.g. surface roughening prior to warm pressing), and the binder burnout process. Mechanical tests and crack investigations were used to gain insight those variables that most contributed to successful lamination, and ultimately, crack-free sintered bodies.

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

A Comprehensive Approach to Ceramic Forming Processes
A Novel Approach to Estimate the Hamaker Constant of Ceramic Systems
A Polyvinyl Pyrrolidone Based Binder for PZT Ceramics
Alumina-based Coatings for Metal-cutting Applications
Ceramic Binder Jetting Additive Manufacturing
Characterization of Early Stage Sintering in Hydroxyapatite via Thermal Conductivity Measurements
Cold and Flash Sintering of Metal-doped LLZO for Solid-State Battery Applications
Cold Sintering of Potassium Sodium Niobate, K0.5Na0.5NbO3
Current Progress in Synthesis and Design of Ternary Phases
Densification and Phase Analysis of Zirconium Carbide Ceramics with Different Carbon Contents
Development of CeO2 Stabilized ZrO2 Inks for DIW
Development of Textured UHTC Borides Using Extremely Low Magnetic Fields
Doping Alumina with Carbon?
Fabrication and Microstructure Representation of Heterogeneous Gradient Complex Materials
Flash Sintering of Ceramics: Towards Homogeneous Components with Improved Mechanical Properties
High Throughput, Ultra-fast Laser Sintering of Alumina Sample Array for Establishing the Machine-learning-based Mapping Between Microstructure and Hardness
Impact of Embossing Geometry on the Replication Accuracy of Microchannels in Tape Cast Ceramics
Investigation of Electrical Properties of BaTiO3-PEEK cComposite Processed by Cold Sintering
Investigation of Lamination Approaches for SiC-filled Thermoplastic Polymer Blends
Multi-Material 3D Printing of Ceramics: Process Overview and Successful Trial Examples
Neutron Scattering Visualizing Defects Generation and Structure Recovery in Ball-milled Spinel Oxide
Open Platform Material Development for Additive UV Polymer Manufacturing
Passive pH Control Using Ceramic Particles
Preparation of BaTiO3 Composites by Cold Sintering Process
Process Capability of Lithography-based Ceramic Manufacturing
Processing of High Entropy Garnet Optical Ceramics
Role of Processing and Microstructure on the Phase Transformation in High Entropy Oxides
Surface Area Reduction Behavior of Various Forming Methods of Alumina
The Correlation of Mullite Formation in Porcelains with the Glass Formation Boundary
The Optimization of Field Assisted Sintering Technology and Processing for Ultrahigh Temperature Ceramics for Extreme Environments
Thermal and Mechanical Properties of Freeze-tape Cast Derived Ceramic-metal Composites
Ultra-fast Densification of UHTC ZrB2
Ultrafast High Temperature Sintering of Ceramic Materials for High Temperature Applications
Ultrafast Sintering with and without Electric Fields and Electrochemically Controlled Microstructural Evolution
Utilizing Cold Sintering in the Design and Integration of New Functional Composite Materials

Questions about ProgramMaster? Contact programming@programmaster.org