ProgramMaster Logo
Conference Tools for MS&T22: Materials Science & Technology
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting MS&T22: Materials Science & Technology
Symposium Manufacturing and Processing of Advanced Ceramic Materials
Presentation Title Surface Area Reduction Behavior of Various Forming Methods of Alumina
Author(s) Daniel J. Delia, William M Carty, Hyojin Lee
On-Site Speaker (Planned) Daniel J. Delia
Abstract Scope The driving force for sintering and densification is the exchange of solid-vapor surface energy for solid-solid surface energy. The solid-vapor surface energy then correlates the measurable surface area obtained via nitrogen adsorption measurements (i.e., B.E.T. theory). To evaluate the role of processing on surface area reduction, and then potentially on the sinterability of ceramic compacts, compacts were prepared through several forming methods including loose powder (tapped bed) and through the slip casting of flocculated and dispersed suspensions of several commercial alumina powders. Specific surface area (SSA) was measured after heat treatments over a range of temperatures. The results indicate that the SSA reduction trajectory is independent of forming method. In addition, compacts were prepared from blends of fine and coarse powders, and from this data, a threshold temperature at which surface area reduction is observed, was deduced.
Proceedings Inclusion? Planned: At-meeting proceedings

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

A Comprehensive Approach to Ceramic Forming Processes
A Novel Approach to Estimate the Hamaker Constant of Ceramic Systems
A Polyvinyl Pyrrolidone Based Binder for PZT Ceramics
Alumina-based Coatings for Metal-cutting Applications
Ceramic Binder Jetting Additive Manufacturing
Characterization of Early Stage Sintering in Hydroxyapatite via Thermal Conductivity Measurements
Cold and Flash Sintering of Metal-doped LLZO for Solid-State Battery Applications
Cold Sintering of Potassium Sodium Niobate, K0.5Na0.5NbO3
Current Progress in Synthesis and Design of Ternary Phases
Densification and Phase Analysis of Zirconium Carbide Ceramics with Different Carbon Contents
Development of CeO2 Stabilized ZrO2 Inks for DIW
Development of Textured UHTC Borides Using Extremely Low Magnetic Fields
Doping Alumina with Carbon?
Fabrication and Characterization of Dense Advanced Ceramic Coatings by Aerosol Deposition
Fabrication and Microstructure Representation of Heterogeneous Gradient Complex Materials
Flash Sintering of Ceramics: Towards Homogeneous Components with Improved Mechanical Properties
High Throughput, Ultra-fast Laser Sintering of Alumina Sample Array for Establishing the Machine-learning-based Mapping Between Microstructure and Hardness
Impact of Embossing Geometry on the Replication Accuracy of Microchannels in Tape Cast Ceramics
Investigation of Electrical Properties of BaTiO3-PEEK cComposite Processed by Cold Sintering
Investigation of Lamination Approaches for SiC-filled Thermoplastic Polymer Blends
Multi-Material 3D Printing of Ceramics: Process Overview and Successful Trial Examples
Neutron Scattering Visualizing Defects Generation and Structure Recovery in Ball-milled Spinel Oxide
Open Platform Material Development for Additive UV Polymer Manufacturing
Passive pH Control Using Ceramic Particles
Preparation of BaTiO3 Composites by Cold Sintering Process
Process Capability of Lithography-based Ceramic Manufacturing
Processing of High Entropy Garnet Optical Ceramics
Role of Processing and Microstructure on the Phase Transformation in High Entropy Oxides
Surface Area Reduction Behavior of Various Forming Methods of Alumina
The Correlation of Mullite Formation in Porcelains with the Glass Formation Boundary
The Optimization of Field Assisted Sintering Technology and Processing for Ultrahigh Temperature Ceramics for Extreme Environments
Thermal and Mechanical Properties of Freeze-tape Cast Derived Ceramic-metal Composites
Ultra-fast Densification of UHTC ZrB2
Ultrafast High Temperature Sintering of Ceramic Materials for High Temperature Applications
Ultrafast Sintering with and without Electric Fields and Electrochemically Controlled Microstructural Evolution
Utilizing Cold Sintering in the Design and Integration of New Functional Composite Materials

Questions about ProgramMaster? Contact programming@programmaster.org