ProgramMaster Logo
Conference Tools for MS&T22: Materials Science & Technology
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting MS&T22: Materials Science & Technology
Symposium Manufacturing and Processing of Advanced Ceramic Materials
Presentation Title Multi-Material 3D Printing of Ceramics: Process Overview and Successful Trial Examples
Author(s) Shawn Allan, Martin Schwentenwein, Sebastian Geier, Nicole Ross, Nicholas Voellm, Ryan Fordham
On-Site Speaker (Planned) Shawn Allan
Abstract Scope Many applications of interest for 3D printing require the use of more than one material in combination to achieve functionality and improved properties. A multi-material approach to high-resolution lithography-based ceramic manufacturing will be presented. Co-printing of different ceramics or even metals in separate layers of a printed part is possible, as well as spatially-resolved combinations within a single layer. This technique paves the way to achieve complex bi-phasic ceramic components. Successful trials that will be presented here include combinations of alumina with colored alumina; zirconia with colored zirconia; and alumina with molybdenum-alumina cermet. The presentation will cover the actual multi-material 3D printing process with a focus on the results and current challenges in terms of co-sintering different ceramic materials. Initial results show that this technological approach holds great potential to pave the way from classical single material structures to bi-material components, and subsequently multi-material and functionally-graded ceramics.

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

A Comprehensive Approach to Ceramic Forming Processes
A Novel Approach to Estimate the Hamaker Constant of Ceramic Systems
A Polyvinyl Pyrrolidone Based Binder for PZT Ceramics
Alumina-based Coatings for Metal-cutting Applications
Ceramic Binder Jetting Additive Manufacturing
Characterization of Early Stage Sintering in Hydroxyapatite via Thermal Conductivity Measurements
Cold and Flash Sintering of Metal-doped LLZO for Solid-State Battery Applications
Cold Sintering of Potassium Sodium Niobate, K0.5Na0.5NbO3
Current Progress in Synthesis and Design of Ternary Phases
Densification and Phase Analysis of Zirconium Carbide Ceramics with Different Carbon Contents
Development of CeO2 Stabilized ZrO2 Inks for DIW
Development of Textured UHTC Borides Using Extremely Low Magnetic Fields
Doping Alumina with Carbon?
Fabrication and Microstructure Representation of Heterogeneous Gradient Complex Materials
Flash Sintering of Ceramics: Towards Homogeneous Components with Improved Mechanical Properties
High Throughput, Ultra-fast Laser Sintering of Alumina Sample Array for Establishing the Machine-learning-based Mapping Between Microstructure and Hardness
Impact of Embossing Geometry on the Replication Accuracy of Microchannels in Tape Cast Ceramics
Investigation of Electrical Properties of BaTiO3-PEEK cComposite Processed by Cold Sintering
Investigation of Lamination Approaches for SiC-filled Thermoplastic Polymer Blends
Multi-Material 3D Printing of Ceramics: Process Overview and Successful Trial Examples
Neutron Scattering Visualizing Defects Generation and Structure Recovery in Ball-milled Spinel Oxide
Open Platform Material Development for Additive UV Polymer Manufacturing
Passive pH Control Using Ceramic Particles
Preparation of BaTiO3 Composites by Cold Sintering Process
Process Capability of Lithography-based Ceramic Manufacturing
Processing of High Entropy Garnet Optical Ceramics
Role of Processing and Microstructure on the Phase Transformation in High Entropy Oxides
Surface Area Reduction Behavior of Various Forming Methods of Alumina
The Correlation of Mullite Formation in Porcelains with the Glass Formation Boundary
The Optimization of Field Assisted Sintering Technology and Processing for Ultrahigh Temperature Ceramics for Extreme Environments
Thermal and Mechanical Properties of Freeze-tape Cast Derived Ceramic-metal Composites
Ultra-fast Densification of UHTC ZrB2
Ultrafast High Temperature Sintering of Ceramic Materials for High Temperature Applications
Ultrafast Sintering with and without Electric Fields and Electrochemically Controlled Microstructural Evolution
Utilizing Cold Sintering in the Design and Integration of New Functional Composite Materials

Questions about ProgramMaster? Contact programming@programmaster.org