ProgramMaster Logo
Conference Tools for 2022 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Symposium
Meeting 2022 TMS Annual Meeting & Exhibition
Symposium Advanced Characterization Techniques for Quantifying and Modeling Deformation
Sponsorship TMS Extraction and Processing Division
TMS Structural Materials Division
TMS: Advanced Characterization, Testing, and Simulation Committee
TMS: Materials Characterization Committee
Organizer(s) Mariyappan Arul Kumar, Los Alamos National Laboratory
Irene J. Beyerlein, University of California-Santa Barbara
Wolfgang Pantleon, Technical University of Denmark
C. Cem Tasan, Massachusetts Institute of Technology
Olivia D. Underwood Jackson, Sandia National Laboratories
Scope Objective: This symposium will provide a venue for presentations featuring the use of advanced characterization techniques in all classes of materials to quantify and model deformation mechanisms.

Background and Rationale: Advances in characterization technology have greatly improved our ability to quantify deformation mechanisms such as dislocations, twinning, and stress induced phase transformations, and the microstructural changes accompanying deformation such as texture evolution, grain morphology changes, and localized strain. A variety of relatively new techniques are being applied to both structural and functional materials. These techniques, in combination with modeling, are improving our understanding of deformation and failure during material processing/forming and under normal or extreme conditions in service. In situ techniques, especially, are providing enhanced understanding of individual mechanisms, their interactions, and direct validation of simulations from computational materials science models. This gathering provides a venue to discuss and share new advances in current techniques or new technique development or in pairing with algorithms or simulations as they apply to deformation behavior.
Areas of interest include, but are not limited to:
(1) Dislocations, deformation twins, and stress-induced phase transformations
(2) All advanced X-Ray-based techniques
(3) All advanced electron-based techniques including HR-(S)TEM, EBSD, HR-EBSD, ECCI, PED, in situ TEM
(4) All structural and functional materials systems
(5) Advances in material modeling through the use of advanced characterization techniques
(7) New characterization and in-situ technique development

Abstracts Due 07/01/2021
Proceedings Plan Planned: Supplemental Proceedings volume
PRESENTATIONS APPROVED FOR THIS SYMPOSIUM INCLUDE
No additional information can be displayed at this time.


Questions about ProgramMaster? Contact programming@programmaster.org