ProgramMaster Logo
Conference Tools for MS&T21: Materials Science & Technology
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting MS&T21: Materials Science & Technology
Symposium Additive Manufacturing of High and Ultra-High Temperature Ceramics and Composites: Processing, Characterization and Testing
Presentation Title Additive Slurry Drying as a Novel Method for Realizing Large Ceramic Components Using AM
Author(s) Johannes Homa, Yannik Zieger, Martin Schwentenwein, Shawn M. Allan
On-Site Speaker (Planned) Shawn M. Allan
Abstract Scope AM of ceramic materials is steadily gaining interest and importance for a multitude of different applications. Two of the obstacles in this area are the comparably long post-processing times for debinding and sintering of printed green parts and the limitation to rather small geometries. To overcome these issues, this contribution will focus on a novel approach to structure water-based ceramic suspensions that allows printing and subsequent sintering of large and bulky components. By using a lithographic exposure process using a wavelength in the IR region the thermal energy that is generated is exploited to partially dry the suspensions and consolidate the green part with a high green density. For alumina, the resulting density and strength data is on the same level as for the respective conventional analogues. This process can also be used for highly light absorbing powder and hence, can be used as well for UHTCs.

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

Additive Manufacturing of Aqueous Based Silicon Nitride Suspensions via Direct Writing
Additive Manufacturing of Corrosion Resistant UHTC Materials for Chloride Salt-to-sCO2 Brayton Cycle Heat Exchangers
Additive Manufacturing of High-performance Advanced Ceramics by the Ceramic On-demand Extrusion (CODE) Process
Additive Manufacturing of Silicon Nitride Using a Slurry Approach
Additive Manufacturing of ZrB2–ZrSi2 Composites Using an Electron Beam Melting (EBM) Process
Additive Manufacturing Of ZrB2-SiC Heat Exchanger Geometries by Ceramic on Demand Extrusion
Additive Slurry Drying as a Novel Method for Realizing Large Ceramic Components Using AM
Advanced Polymer-derived (Ultra)-high-temperature Resistant Ceramics and Ceramic Nanocomposites for Additive Manufacturing
AM of UHTCs at LLNL
Binder Jet Additive Manufacturing of Novel Design, High Temperature, Ceramic Heat Exchangers
Ceramic On-demand Extrusion (CODE) of Functionally Graded ZrB2-Mo
Deposition of UHTC Coatings on Refractory Substrates by Directed Energy Methods
High Temperature Properties of Polymer-derived Ceramic Matrix Composites Fabricated via Additive Manufacturing
Innovative Route for the 3D Printing of Hybrid Silicon Carbide/Carbon Fiber Nanocomposites
Investigation of Oxidation Behavior of ZrB2-SiC Composites under Different Partial Pressures of Oxygen
Molten Chloride Salt Corrosion Testing of Ultra High Temperature Ceramics for High Temperature Heat Exchangers Fabricated by Additive Manufacturing Methods
Pathways to Additively Manufacture Ultra-high Temperature Ceramic Composites
Process Development and Optimization for The Laser Powder Bed Fusion of WC-Ni Cermet Composites
Strategies for Printing Continuous Fibers and Post-processing for Ceramic Matrix Composites (CMCs)

Questions about ProgramMaster? Contact programming@programmaster.org