ProgramMaster Logo
Conference Tools for 2023 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2023 TMS Annual Meeting & Exhibition
Symposium Materials Research in Reduced Gravity
Presentation Title CAPTN Simulation of Dendritic Grain Structures
Author(s) Yijian Wu, Oriane Senninger, Charles-Andre Gandin
On-Site Speaker (Planned) Charles-Andre Gandin
Abstract Scope The Cellular Automaton - Parabolic Thick Needle (CAPTN) method is developed to compute dendritic microstructures. A dendritic branch is modeled as a cylinder headed by a parabolic tip. Its kinetics is computed using the composition field in the liquid in the vicinity of the parabola. Implementation involves the finite element method together with adapted mesh. The dendritic branch takes part in the definition of a grain envelope by its integration in a cellular automaton growth algorithm. Application is demonstrated to competition taking place among columnar dendritic grains forming as a result of directional solidification and to the growth equiaxed dendritic grains, both in two and three dimensions. Results are compared with existing numerical solutions, showing promising results for application to experiments conducted in reduced gravity.
Proceedings Inclusion? Planned:
Keywords Solidification,

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

AC Calorimetry of Liquid Metals in Electromagnetic Levitation: Comparison of Procedures in Microgravity and Terrestrial Conditions
Analysis of In-Situ Microgravity Equiaxed Solidification Experiment using Machine Learning and Advanced Ground-Based Characterization Techniques
CAPTN Simulation of Dendritic Grain Structures
Contactless Material Properties Measurement using AC or DC Magnetic Fields
Containerless Solidification of Al-22.5wt%Cu in Reduced Gravity Using the ISS-EML
Containerless Thermophysical Property Measurement of Bulk Metallic Glasses in the Liquid State under Microgravity
Convection during Modulation Calorimetry Experiments in Electromagnetic Levitation
Effects of Oxygen on the Surface Tension of Liquid Inconel 718
ESA’s Materials Science in Space Program: Current State of Affairs and Outlook
Evolution of Dendritic Extended 3D Patterns during Directional Solidification: Microgravity Experiments in DECLIC-DSI Onboard ISS and Phase-field Modeling
Experiment Preparation and Operation of the Electromagnetic Levitator EML on the ISS
Experimental and Numerical Investigation of Dynamic Behavior of an Oscillating High-density Drop Processed using Electrostatic Levitation Furnace Aboard the International Space Station
Gravity Influence on the Distortion-Densification Trajectory for Liquid Phase Sintering
In-situ Investigation of the Impact of Gravity on CET during Directional Solidification of Al-Cu Alloys
Influence of Undercooling and Convective Stirring on Phase Transformations in Electromagnetically Levitated Fe-Co
Melt Flow Sensitivity to Sample Properties and Changes in the Electromagnetic Field During Oscillating Drop Experiments in EML
Morphological Stability of Eutectic Growth Patterns: In-situ Experiments in Microgravity with the Transparent Alloys Apparatus
Nucleation and Growth Dynamics of Equiaxed Dendrites in Thin Metallic Samples in Microgravity and on Ground
Overview of NASA’s Reduced Gravity Materials Science Research
Peritectic Coupled Growth Under Reduced Gravity
Relating Cooling Rates in Superheated Liquid and during Solidification
Solidification of Al-Cu Alloys in Microgravity and Terrestrial Environments
Structure and Properties of the Solder Joints Produced in Terrestrial and Microgravity Environment
Thermophysical Properties of Ge- and Si-based Semiconductors
Transient Convective Transport during Undercooled Droplet Solidification
Visualization of Particle-Interface Interactions
What's New in PSI?

Questions about ProgramMaster? Contact programming@programmaster.org