ProgramMaster Logo
Conference Tools for MS&T22: Materials Science & Technology
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting MS&T22: Materials Science & Technology
Symposium 3D Printing of Biomaterials and Devices
Presentation Title 3D Bioprinting with Engineered Living Materials for Advanced Biofabrication
Author(s) Weinan Xu
On-Site Speaker (Planned) Weinan Xu
Abstract Scope Engineered living materials (ELMs) are an emerging class of materials that combine living biological entities especially bacteria with functional soft materials. The incorporation of living bacteria provides the materials with biosensing, self-regenerative, and molecular computing capabilities. Recently, ELMs have also been used for direct ink writing-based 3D printing, which enables the fabrication of dynamic and active 3D structures for various applications. In this talk, I will discuss our recent progress on 3D printing with functional bacteria embedded in a supporting hydrogel matrix for advanced biofabrication. The bacteria can be genetically engineered to have specific functions, such as generating bacterial cellulose or reacting to external stimuli. We have demonstrated that 3D cellulose structures can be generated by in situ biosynthesis in the 3D printed template, which provides an efficient and versatile approach for tissue engineering using 3D nanoporous cellulose.
Proceedings Inclusion? Undecided

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

3-D Printing in Regenerative Engineering
3D Bioprinting with Engineered Living Materials for Advanced Biofabrication
3D Printing Integrated with Controlled Delivery for In Situ Tissue Engineering of Complex and Inhomogeneous Tissues from Endogenous Stem/Progenitor Cells
3D Printing of Nanomaterials-based Biomedical Electronics
3D Printing of Zonal-structured Scaffolds for Complex Tissue Engineering
3D Printing Strategies to Fabricate Complex Scaffolds for Tissue Engineering Applications
Additive Manufacturing Process Simulation of Polyetherimide Porous Scaffolds for Bone Tissue Engineering Applications
Biohybrid Functional Material Design by Engineered Peptides
C-1: Surface Treatment of Titanium by Alkali treatment and Magnesium Deposition for Orthopedic Application
Effect of Printing Parameters on 3D-printed Biodegradable Biopolymer-metal Composite Material
Effect of Sr2+ and Ca2+ ions on 3D printed Beta Tricalcium-Phosphate/Alginate Composite Scaffolds for Bone Tissue Engineering
Implant Optimization Guided by Biomimetic Insight
Interlocked Bone Scaffolds with BMP Induced Osteogenesis with Use of 3D Printed Molds
Laser-Based 3D Printing for Medical Applications
Mechanical and Electrical Properties of 3D Printed Wearable Structures
Periodic Cellular Ceramic Structures by Replication of Additive Manufactured Templates
Selective Artificial Neural Network by Targeted Delivery of Neuronal Cells Using Magnetically Controlled 3D Printed Microrobots
Sheet Lamination Additive Manufacturing (SLAM) – A Viable Approach to Resorbable 3D Constructs for Bone Tissue Engineering
Solvent Cast 3D Printing with Different Molecular Weight Polymers
The Regulatory Roles of the Substrate Microenvironment in Cancer Progression in Tissue Engineering Scaffolds

Questions about ProgramMaster? Contact programming@programmaster.org