ProgramMaster Logo
Conference Tools for MS&T22: Materials Science & Technology
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Symposium
Meeting MS&T22: Materials Science & Technology
Symposium Controlled Synthesis, Processing, and Applications of Structural and Functional Nanomaterials
Sponsorship ACerS Basic Science Division
ACerS Electronics Division
ACerS Engineering Ceramics Division
Organizer(s) Haitao Zhang, University of North Carolina at Charlotte
Gurpreet Singh, Kansas State University
Kathy Lu, Virginia Polytechnic Institute and State University
Edward Gorzkowski, Naval Research Laboratory
Jian Shi, Rensselear Polytechnich University
Michael Naguib, Tulane University
Sanjay Mathur, University of Cologne
Scope Nanostructured materials (nanoparticles, nanowires, nanosheets, etc.) show great promise to enable a broad range of new applications as well as improve existing technologies because of their unique physical and chemical properties. This includes energy applications (e.g., fuel cells, solar cells, and batteries, etc.), semiconductor devices, optical and optoelectronic devices, piezoelectric and ferroelectric devices, biology and biomedical applications, and structural applications, etc. However, many barriers still exist in understanding and controlling the processing of nanostructured materials. Novel nanostructure designs are critically needed at all stages of nanoscale material formation processes to enable unique performances, low cost, and green engineering. Great challenges also remain on the composition and morphology control of multi-component functional nanomaterials.

This symposium will focus on the following general topics: 1) Synthesis, growth mechanism study, and structural characterization to preserve and improve nanoscale dimension, structure, and properties with tunability for different applications; 2) Novel design and understanding of the assembly and fabrication technologies for multi-component and hierarchical nanostructures; and 3) Theoretical, computational, and machine learning study of the material design, growth behavior, and property prediction in 0D to 2D materials.
Focused topics include, but are not limited to, nanostructures in energy applications, 2D materials, polymer-derived ceramic nanostructures, and biological and biomedical nanomaterials, etc.

Abstracts Due 03/15/2022
Proceedings Plan Undecided
PRESENTATIONS APPROVED FOR THIS SYMPOSIUM INCLUDE
No additional information can be displayed at this time.


Questions about ProgramMaster? Contact programming@programmaster.org