ProgramMaster Logo
Conference Tools for 2021 Annual International Solid Freeform Fabrication Symposium (SFF Symp 2021)
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2021 Annual International Solid Freeform Fabrication Symposium (SFF Symp 2021)
Symposium Physical Modeling
Presentation Title Numerical Simulation on Spattering and Denudation of Laser Powder Bed Fusion Additive Manufacturing
Author(s) Hui Chen, Wentao Yan
On-Site Speaker (Planned) Hui Chen
Abstract Scope To understand the physical mechanisms of the spattering and denudation phenomena in the laser powder bed fusion additive manufacturing, we develop a multiphase flow model by bi-directionally coupling the discrete element method and finite volume method, where the exchanges of both momentum and energy between the powder particles and gases are incorporated. It is the first time that the dynamic behaviours of both the gas phase and powder particles during the spattering and denudation phenomena are reproduced in computational modelling, which agree well with the published experimental observation. The metal vapour spouts out and decelerates sharply along the jetting direction while expanding radially, which induces remarkable vortex flows of the ambient gas. With comparative simulation cases, the vapour jetting and the consequent vortex flow are demonstrated to be dominant in the spattering and denudation phenomena, and the thermal buoyancy effect is proved to be negligible. Moreover, the influence of the jetting angle is investigated: no remarkable effect within the range of 60° - 120°; while larger than 150°, the accumulation zone is eliminated leading to a completely exposed denudation zone.
Proceedings Inclusion? Definite: Post-meeting proceedings

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

3D Transient Zone in Conduction and Keyhole Mode Melting in Laser Powder Bed Fusion Process
A Method of Predicting Powder Flowability for SLS
A Multi-grid Cellular Automaton Model for Simulating Dendrite Growth and Its Application in Additive Manufacturing
A Periodic Homogenization Model Including Porosity to Predict Elastic Properties of 3d-printed Continuous Carbon Fiber-reinforced Composites
Cellular Automata Modeling of Layer-wise Microstructure Convergence as Functions of Material and Processing Variables
Controlling Interdependent Meso-nanosecond Dynamics and Defect Generation Using a Digital Twin
Coupled Phase-field and Crystal Plasticity Modelling to Investigate the Process-structure-property Relationship of Heat Treatment for Additive Manufactured Alloys
Crystal Plasticity Model of Micro-scale Residual Stress in Additive Manufacturing
Development of a Simulation Model of a Radiation-based Print Heating System for Fused Deposition Modeling
Development of Temperature History Profiles for Production of Ti-6Al-4V Using a 1D Layer Model
Discrete Element Modeling of Fused Deposition Modeling Process
Effects of local fiber orientation state on thermal-mechanical behaviors of composite parts made by large area polymer deposition additive manufacturing
Evaporation Model for Keyhole Dynamics during Additive Manufacturing of Metal
Experiment Based Superposition Thermal Modeling of Laser Powder Bed Fusion
Exploring Transient Printing Processes and Defects of Various Builds during Additive Manufacturing
Finite element simulation of direct deposition additive manufacturing for fiber reinforced thermoplastics
High-fidelity Modeling of Binder-powder Interactions in Binder Jetting
High-fidelity Modelling of Thermal Stress for Additive Manufacturing by Linking Thermal-fluid and Mechanical Models
Inference of Metal Additive Manufacturing Process States via Deep Learning Techniques
Influence of Oxygen Content on Melt Pool Dynamics in Powder Bed Fusion Processes
Integrated Multi-physics Modeling of Process-structure-property in Additive Manufacturing
Laser Spot Size and Scaling Laws for Laser Beam Additive Manufacturing
Modeling Collapse Behavior in Large-scale Thermoset Additive Manufacturing
Modeling Light Scattering Vat Photopolymerization Resins with Monte Carlo Ray Tracing
Modeling the Effects of Coordinated Multi-beam Laser Powder Bed Fusion on Melt Pool Geometry and Solidification Microstructure
Modified Gibson-Ashby Model for Stiffness Prediction of Defective Lattices
Multi-physics & Multi-materials Modeling of Steel/Inconel Functionally Gradient Material Fabricated with Laser-based Directed Energy Deposition
Multiscale Modeling of Plasticity for Laser Powder Bed Fusion Stainless Steel with Tailored Crystallographic Texture
Non-orthogonal Adiabatic Boundaries in Semi-analytical Laser Powder Bed Fusion Simulations Using Machine Learning
Numerical Prediction of Thermal Histories and Residual Stresses for Directed Energy Deposition (DED) Powder-blown Process
Numerical predictions of bottom layer stability in material extrusion additive manufacturing
Numerical Simulation on Spattering and Denudation of Laser Powder Bed Fusion Additive Manufacturing
On the Applicability of Internal State Variable Plasticity Models for Metal-based Additive Manufacturing
Part-scale Thermal FEA Modeling and Experimental Validation of Laser Powder Bed Fusion
Predicting Part Distortion and Recoater Crash in Laser Powder Bed Fusion Using Graph Theory
Simulation of Micro-void Development within Large Scale Polymer Composite Deposition Beads
Thermal Modeling in Additive Manufacturing Using Graph Theory – Validation with In-situ Thermography Measurements for a Large Impeller Part made Using Laser Powder Bed Fusion
Thermal Modeling in Additive Manufacturing Using Graph Theory: Validation with Directed Energy Deposition
Thermal Modeling of Fiber Optic Embedment in Metal Additive Manufacturing
Thermal Modeling, Bead Parameterization, and Toolpath Analysis of Material Extrusion Additive Manufacturing
Thermomechanical and Geometry Model for Directed Energy Deposition with 2D/3D Toolpaths
Using Medial Surfaces to Produce Graded Voronoi Cell Infill Structures for 3D Printed Objects

Questions about ProgramMaster? Contact programming@programmaster.org