ProgramMaster Logo
Conference Tools for MS&T23: Materials Science & Technology
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting MS&T23: Materials Science & Technology
Symposium Advanced Characterization of Materials for Nuclear, Radiation, and Extreme Environments IV
Presentation Title Probing Nanoscale Properties of Radioactive Material by Advanced Correlative Microscopy
Author(s) Shawn Lee Riechers, Joshua A Silverstein, Andrew M Casella
On-Site Speaker (Planned) Shawn Lee Riechers
Abstract Scope Understanding and predicting radiation induced changes in materials has been greatly advanced by characterization at the micrometer to atomic scale, primarily by electron microscopy techniques. However, the effect these changes have on material properties are often measured in bulk at the dozens of micrometers to cm scale. Atomic force microscopy based measurements bridge this gap by providing material properties such as hardness, thermal conductivity, piezo response, etc. with nanometer resolution and can be directly correlated to EM based measurements of the same region. The ability to characterize highly radioactive materials at this scale provides a unique capability to understand fundamental properties of nuclear materials, the effects of radiation induced damage, and ultimately their impact on performance. Comparisons of cladding hardness, pre and post irradiation, and hydrided Zircaloy-4 correlated with EM analysis will be demonstrated. In addition, methods for calibration and comparison with standard material property measurements will be discussed.

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

Accelerated Assessment of Microstructure-Mechanical Property Relationships in Ni Based Superalloys
Accelerated Creep Testing for High-Temperature and Nuclear Applications
Advanced In-situ Strain Mapping for Zr Oxidation by 4D-STEM
Assessing the Ability of Nuclear Fuel Performance Codes to Predict Radially Resolved Properties in Oxide Fuels
Capturing 3D Evolution of Twin Networks in Titanium as a Function of Applied Strain
Effect of Solutes on the Radiation Induced Segregation in Ferritic Alloys at ∑3- grain Boundaries
Effect of Strain Rate on Tensile Properties of C250 Maraging Steel
Enabling Multiscale Materials Characterization with Machine Learning
Four-dimensional Scanning Transmission Electron Microscopy (4D-STEM) Characterization of Intergranular Corrosion of Austenitic Stainless Steels in Lead-bismuth Eutectic
High-Temperature Irradiation Behavior of Piezoelectric Aluminum Nitride
In Situ SEM Nanomechanics at Cryogenic Temperatures
Interdiffusion Behaviour of UN with Zircaloy-4 via Diffusion Couple Studies
M-1: Novel Method for Fabricating and Analysis of 3D Printed Composite for Radiation Shielding Containing Metalized Halloysite Nanotube
Mapping Elemental Distributions Across Thin Corrosion Films Formed on Nuclear Reactor Core and Structural Materials via Ex-situ And In-situ Atom Probe Tomography
Multimodal Characterization of Materials Corrosion in Molten Salts
Phase Stability of Delta-ZrH Under Ion Irradiation
Probing Nanoscale Properties of Radioactive Material by Advanced Correlative Microscopy
STEM-based Mapping of Nanoscale Point Defects Produced via Temperature, Irradiation, And Corrosion
Structural Stability of REE-PO4 (REE=Sm,Tb) under Swift Heavy Ion Irradiation
Thermodynamic Modeling and Calculation of Phase Formation Processes Under Irradiation Conditions of Uranium-plutonium Nitride Fuel
Transition Metal Carbonitride Materials Exposed to Swift Heavy Ions

Questions about ProgramMaster? Contact programming@programmaster.org