ProgramMaster Logo
Conference Tools for 2021 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2021 TMS Annual Meeting & Exhibition
Symposium Computational Techniques for Multi-Scale Modeling in Advanced Manufacturing
Presentation Title Phase-field Modeling of The Evolution Kinetics of Porous Structure During Dealloying of Binary Alloys
Author(s) jie li
On-Site Speaker (Planned) jie li
Abstract Scope A multi-phase-field model is proposed to investigate the porous structure evolution during electrochemical dealloying of binary alloys. The Allen-Cahn equations and modified Cahn-Hillard equations are established to govern phase transformation, bulk and surface diffusion, and chemical reactions. It is found that a thermal noise term disturbed the initial stability of the dealloying front by the heterogeneous nucleation of the porous phase. The growth of porous clusters further exposes the interior inert element to the electrolyte, leading to a constant dealloying velocity of porous structural growth. By investigating the effect of dealloying temperature, chemical content of the electrolyte, and precursor alloy composition, we demonstrate the complex pattern evolution of porous structure from the competition between the corrosion-induced surface roughening and diffusion-induced surface smoothing. The characteristics of porous structural evolution, such as dealloying velocity, ligament size, and residual inert element content under different dealloying conditions, are in good agreement with experimental observations.
Proceedings Inclusion? Planned:

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

A Parametric Study of Grain Size and Its Volume Fraction Effect on Heterogeneous Materials Mechanical Properties
Computational Modeling of Nanoparticles Dispersion in Hybrid Process of Ink Jetting and Laser Powder Bed Fusion
Computational Multi-Scale Modeling of Segregation and Microstructure Evolution during the Solidification of A356 Ingots Processed via a 2-Zone Induction Melting Furnace
Effect of Nozzle Injection Mode on Initial Transfer Behavior of Round Bloom
Fluid Dynamics Effects on Microstructure Prediction in Single-Laser Tracks for Additive Manufacturing
In Situ and Operando Synchrotron Experiments for Additive Manufacturing Model Validation
Investigation of Powder Spattering in Laser Powder Bed Fusion through Multi-physics Modeling and High-speed Synchrotron X-ray Imaging
Machine-learning Informed Design of High-strength Gradient Metals for Additive Manufacturing
Microstructural Evolution and Defect Formation During Pulsed and Continuous Selective Laser Melting
Microstructure Based Modeling of Friction Stir Welded Joint between Dissimilar Metals Using Crystal Plasticity
Modeling Material Behavior during Continuous Bending Under Tension for Inferring the Post-necking Strain Hardening Response of Ductile Sheet Metals: Application to Dual-phase Steels
Modeling the Role of Local Crystallographic Correlations in Microstructures of Ti-6Al-4V Using a Lamellar Visco-plastic Self-consistent Polycrystal Plasticity Formulation
Multiphysics Simulation of Microstructure Evolution in Selective Laser Melting of AlSi10Mg
Multiscale Crystal Plasticity in Integrated Computational Materials Engineering
Particle Resolved Simulation of Laser Powder-bed Fusion Including Metal Evaporation and Vapor Plume Dynamics
Phase-field Modeling of The Evolution Kinetics of Porous Structure During Dealloying of Binary Alloys
Predicting Mechanical Performance in Additive Manufacturing Components Using Deep Learning
Smoothed Particle Hydrodynamics based approach for 3D Modeling of Linear Friction Welding Process
Study on the In-mold Flow Behavior Driven by a Subsurface Electromagnetic Stirring for IF Steel Slab Casting
Synchrotron Calibrated Lagrangian Particle Tracking of Melt-pool Ejections during Laser Powder Bed Fusion

Questions about ProgramMaster? Contact programming@programmaster.org