ProgramMaster Logo
Conference Tools for 2022 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Symposium
Meeting 2022 TMS Annual Meeting & Exhibition
Symposium Mechanical Behavior at the Nanoscale VI
Sponsorship TMS Materials Processing and Manufacturing Division
TMS Structural Materials Division
TMS: Computational Materials Science and Engineering Committee
TMS: Mechanical Behavior of Materials Committee
Organizer(s) Matthew Daly, University of Illinois-Chicago
Douglas D. Stauffer, Bruker Nano Surfaces & Metrology
Wei Gao, University of Texas at San Antonio
Changhong Cao, McGill University
Mohsen Asle Zaeem, Colorado School of Mines
Scope The mechanical behavior of materials emerges from the aggregate operation of competing deformation mechanisms that initiate at the nanoscale. Small-scale mechanics investigations therefore provide critical insights into the fundamentals of deformation phenomena and form a basis for scaling theories. Additionally, the reduction of organizational scale often yields new deformation mechanisms and mechanical behaviors that are not present in bulk materials. This symposium will focus on the deformation behavior of nanostructured materials. A wide variety of nanostructured materials are considered within this scope including low-dimensional and 2D materials, multilayers, nanoarchitectured materials and nanolattices, and bulk nanocrystalline aggregates. Studies that examine size effects and scaling laws, new nanoscale deformation phenomena, emerging methods in nanomechanical characterization, and developments in modeling techniques are welcomed.

Topics will include:
• Size effects on elastic properties, strength, plasticity, fracture mechanisms, adhesion, tribology and fatigue behavior in small-volume and low-dimensional systems including nanopillars, nanowires, nanoparticles, nanostructured fibers, 2D materials, thin films, multilayered materials, and nanolattices

• New nanoscale deformation phenomena in emerging materials and materials systems including concentrated multi-component solutions (e.g. high entropy alloys), complex alloys, 2D materials, nanotwinned materials, and nanoarchitectured systems

• Transitions in deformation mechanisms due to scaling effects such as activation of interface-mediated mechanisms, exhaustion of deformation sources, and size effects on strain-induced phase transformations

• Developments in ex situ and in situ (SEM, TEM, synchrotron, neutron, etc.) techniques that push the limits of nanomechanical characterization (e.g. for extreme conditions such as high temperatures and/or high strain rates)

• Modeling and simulation of deformation processes and mechanical properties at the nanoscale, including coupling to meso/microscale methods

Abstracts Due 07/01/2021
Proceedings Plan Undecided
PRESENTATIONS APPROVED FOR THIS SYMPOSIUM INCLUDE
No additional information can be displayed at this time.


Questions about ProgramMaster? Contact programming@programmaster.org