ProgramMaster Logo
Conference Tools for MS&T22: Materials Science & Technology
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting MS&T22: Materials Science & Technology
Symposium Additive Manufacturing of Ceramic-based Materials: Process Development, Materials, Process Optimization and Applications
Presentation Title A-14: Nanomechanical Characterization of 3D Printed Ceramics
Author(s) Bryan T. Regan, Shuhan Zhang, Nicole Ross, Nicholas Voellm, Ryan Fordham, Shawn M Allan, Udo Schwarz, Amit Datye
On-Site Speaker (Planned) Bryan T. Regan
Abstract Scope A common question in additive manufacturing (AM) is the ability to generate a uniform microstructure throughout parts. AM processes such as extrusion of a filament, jetting of materials or binders, and vat photopolymerization all build parts layer by layer. However, after ceramic parts are printed, they must be heated in a furnace to remove any binder, and to consolidate the part through sintering, into a final ceramic. The printing and the heating processes may introduce both defects and non-uniformities. The goal of this project is to validate the uniformity of the material properties for 3D printed alumina and zirconia samples made by a lithography-based printing method. To accomplish this, the effective elastic modulus and hardness of small sections of the sample will be tested using nanoindentation. Hundreds of indentations will be made in various regions of the sample to verify that the modulus and hardness are consistent throughout the material.

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

A-13: Evaluation of Reliability of Using Combined Rheological Methods for the Development of Ceramic Materials for 3D Printing
A-14: Nanomechanical Characterization of 3D Printed Ceramics
A-15: Rheological Study of 3D Printable All-inorganic Thermoelectric Inks for Direct Writing of Micro-thermoelectric Generator
A Study of Lithography-Based Additive Manufacturing of Ceria Ceramics
Additive Manufacturing of Alumina Toughened Zirconia and Zirconia Toughened Alumina
Additive Manufacturing of Mullite Ceramic by Digital Light Processing
Advanced Manufacturing of Controlled SOFC Electrolyte and Electrode Microstructures through Aerosol Deposition
Bonding Mechanisms in Indirect Selective Laser Sintering
Brittle Particle Cold Spray Technology
Ceramic 3D Printing for Investment Casting
Ceramic Additive Manufacturing for Innovative Zirconia-based Material
Direct Ink Writing of Nanoscale Feature Ceramics via Preceramic Polymer-block Copolymer Inks
Effects of Bimodal Particle Size Distribution on Mechanical and Thermal Properties of Densified SiC-Si Composites from Binder Jetting
Exploration of the Underlying Space in Microscopic Images via Deep Learning for Additively Manufactured Piezoceramics
Fabrication of Powder Components with Cooling Channels by Spark Plasma Sintering and Additive Manufacturing
Influence of Laser Processing Parameters on Thermoelectric and Microstructural Properties of Bi2Te3
Mass Customization, Moving Forwards with Additive Manufacturing
Micro-Cold Spray: Effect of Particle Impact Velocity on SiC Film Morphology
Modeling and Monitoring of Thermal Accumulation During Laser Powder Bed Fusion of Cemented Carbides
Multi-material Printing of Reaction Bonded Carbides by Robocasting
Phase-field Modeling of Co-Sintering of Ceramic Electrolyte/Electrode for All Solid-State Li-ion Batteries
Production of 3D Printed Electrodes for Batteries
Rapid Three-dimensional Printing of High-resolution Piezoelectric Structures Using Micro-CLIP
SLA-based Additive Manufacturing of 3D Structures with Surface Activated Silicone Carbide-polymer Composite
Transparent Alumina Fabricated by Energy Efficient Spark Plasma Sintering

Questions about ProgramMaster? Contact programming@programmaster.org