ProgramMaster Logo
Conference Tools for 2023 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2023 TMS Annual Meeting & Exhibition
Symposium Computational Discovery and Design of Materials
Presentation Title Graph Mining in Materials Science for the Prediction of Material Properties
Author(s) Mehrdad Jalali, Christof Wöll
On-Site Speaker (Planned) Mehrdad Jalali
Abstract Scope There has been a rapid growth in the number and application of new materials. Today, increased ‎computational power and the established use of automated machine learning approaches make the ‎data science tools available, which provide an overview of the chemical space, support the choice of ‎appropriate materials, and predict specific properties of materials for the desired application. Among ‎the different data science tools, graph theory approaches, where data generated from numerous real-world applications are represented as a graph (network) of connected objects, have been widely used in ‎various scientific fields. In this work, we describe the application of a particular graph theory approach ‎known as graph mining to predict material properties based on a constructed graph in the ‎metal-organic framework (MOFs) and high-entropy alloys (HEAs) materials. The results show a ‎significant improvement in predicting properties in both fields.‎
Proceedings Inclusion? Planned:
Keywords Machine Learning, Characterization, High-Entropy Alloys

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

Adaptive Discovery and Mixed-variable Bayesian Optimization of Next Generation Synthesizable Microelectronic Materials
An Inverse Materials Design Route Based on Structure-property Linkages Leveraging 3D Convolutional Neural Network and Bayesian Optimization
Applying Data-driven Models in Materials Science: Unraveling Hidden Relationships between Structures and Properties
Atomistic Modeling of Electronic Transport and Electrochemistry
Band Gap Renormalization in 2D Materials from First-principles
Bridging First-principles Calculations with Experiment: Insights from Case Studies on (Photo)Electrochemical Systems
Closed Loop Computational Materials Discovery
Computation Discovery of Materials for Solid-state Batteries
Computational Design for Metallic Meso-architected Materials for Dynamics
Computer Vision Problems in Transmission Electron Microscopy
Crystal to PNG (xtal2png): A Screening Tool to Accelerate Domain Transfer from State-of-the-art Image-processing Models to Materials Informatics and a Case Study on Denoising Diffusion Probabilistic Models
Data- and Physics-driven Approaches to Discovering the Governing Equations for Complex Phenomena in Heterogeneous Materials
Design and Development of High Strength High Conductivity Alloys using ICMD® Approach
Design of Bistable Metamaterials for Desired Dynamic Behavior
Designing High-Tc Superconductors with BCS-inspired Screening, Density Functional Theory and Deep-learning
Designing Ohmic and Schottky Interfaces for Oxide Electronics
Developing an Ab Initio-Kinetic Passivation Model for High-throughput Screening of Material Stability
Electronic and Structural Properties of Ab-initio Predicted BxAl1-xN Alloy Structures
Elucidating the Mechanisms for Fast Diffusion in Doped LLZO
Exploiting First-principles Based Interpretation of X-ray Absorption Spectra of Ni, Cr, Fe Elements in Molten-salt System
Graph Mining in Materials Science for the Prediction of Material Properties
M-16: Building an ImageNet for Materials Grain Boundaries
M-17: Generative Adversarial Networks and Diffusion Models in Material Discovery
M-28: Molecular Dynamics Investigation of Electrochemical Systems
Machine-learning-boosted Searching and Optimization of Emergent Quantum Materials
Machine Learning Assisted Discovery of Composite Solid-state Electrolytes in Context of Li-ion Batteries
Modeling of Local Lattice Distortion Effects on Vacancy Migrations in Multicomponent FCC Alloys
Searching for New "Quantum Defects" through High-throughput Computational Screening
Ultra-fast Interpretable Machine-learning Potentials for Accelerated Structure Prediction of Materials
What is a Minimal Working Example for a Self-driving Laboratory?

Questions about ProgramMaster? Contact programming@programmaster.org