ProgramMaster Logo
Conference Tools for Materials Science & Technology 2020
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting Materials Science & Technology 2020
Symposium Materials Informatics for Images and Multi-dimensional Datasets
Presentation Title Accelerate TEM and Tomography Imaging by Deep-learning Enabled Compressive Sensing and Information Inpainting in High-dimensional Manifold
Author(s) Huolin Xin
On-Site Speaker (Planned) Huolin Xin
Abstract Scope Deep learning schemes have already impacted areas such as cognitive game theory (e.g., computer chess and the game of Go), pattern (e.g., facial or fingerprint) recognition, event forecasting, and bioinformatics. They are beginning to make major inroads within physics, chemistry and materials sciences and hold considerable promise for accelerating the discovery of new theories and materials. In this talk, I will introduce deep convolutional neural networks, and how they can be applied to decoding time-domain compressed TEM video streams to improve time resolution by orders of magnitude and how it can solve the missing-wedge problem in tomographic imaging through information inpainting in a high-dimensional manifold.

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

Accelerate TEM and Tomography Imaging by Deep-learning Enabled Compressive Sensing and Information Inpainting in High-dimensional Manifold
Assessment of the Ability of Laboratory Accelerated Corrosion Tests to Accurately Predict On-road Corrosion of 6xxx Al Alloys
Automated Optical Microscopy for Rapid Defect Screening
Computer Vision and Machine Learning for Microstructural Image Data
Developing Granular Dielectrics Based on Reconstructed Micro-CT Images
FAIR Digital Object Framework and High Throughput Experiment
Feature Characterization of Electron Backscatter Patterns from Rotating Lattice Single Crystals Using Machine Learning
Identifying Crack Initiation Sites with CNNs
Incorporating Materials Physics into Imaging Algorithms for Microscope Image Interpretation
Introductory Comments: Materials Informatics for Images and Multi-dimensional Datasets
Keyhole Porosity Threshold in Laser Melting Revealed by High-Speed X-ray Imaging
Microstructure Representation for Physically Meaningful Descriptors
Neural Networks and Community Driven Software for Scanning Transmission Electron Microscopy
Towards Smart Categorization of Growth Morphology by Machine Learning

Questions about ProgramMaster? Contact programming@programmaster.org