ProgramMaster Logo
Conference Tools for MS&T22: Materials Science & Technology
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting MS&T22: Materials Science & Technology
Symposium Thermodynamics of Materials in Extreme Environments
Presentation Title Thermo-mechanical Property Prediction of Materials Using a Python Based Interface with Quantum Espresso
Author(s) Joseph Michael Derrick, Tejesh Dube, Jing Zhang
On-Site Speaker (Planned) Joseph Michael Derrick
Abstract Scope The aim of this work is to provide engineers a framework and tool for evaluating thermo-mechanical properties of high temperature materials through a python-based interface that harnesses Quantum Espresso, an open-source simulation package for materials simulation. Quantum Espresso is a predictive material properties code that is based on density-functional theory, planes waves, and pseudopotentials. Several open-source python packages were used to achieve the framework and perform calculations. As this work is to establish a baseline framework upon which further improvements and modifications will be integrated, only materials with well-established testing from external sources, such as silicon carbide and titanium carbide, were used to validate results generated.
Proceedings Inclusion? Undecided

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

Addressing the Thermodynamic Behavior of Volatile Fission Products in Fluoride Salt-Fueled Molten Salt Reactors: Behavior of Cesium and Iodine
Calorimetric Determination of Melting Point Temperatures, Heat Capacities, and Heats of Fusion of Binary NaCl−UCl3 and MgCl2 − UCl3 Systems
Density, Volatility, and Viscosity of Molten Sodium and Potassium Chloride Salts
Design of High Melting Point Materials via Deep Learning and First Principles
Effect of Desulfurizer on Hot Metal Pretreatment
Enthalpy of Mixing of LaCl3 − LiCl:KCl Pseudo Binary Molten Salt System
High Temperature Boron, Lithium, Iron, and Nickel Aqueous Thermochemistry for Pressurized Water Nuclear Reactors
Investigation of the Thermodynamics of Intermetallic Materials in the Simulation of Synthesis in the Ti-Al system
Measuring Interfacial Thermodynamics from High Temperature In situ TEM Based Bicrystals Tested under Mechanical Load
Melting Point, Enthalpy of Fusion, and Excess Heat Capacity of a FLiNaK Determined by the CALPHAD Method
Persistence of Materials Under Extreme Conditions
Phase Diagrams of Metal-Nitrogen Compounds at High Pressure and High Temperature
Predictive Modeling of Complex Liquids with Uncertainty Quantification by Open-Source Tools: Illustrated with Thermodynamic Properties of Molten Salts
The Thermochemical Stability of Rare Earth Oxides and Silicates for Thermal/Environmental Barrier Coating Applications
There is More to Heat Capacity Measurements than Calculating Entropy
Thermo-mechanical Property Prediction of Materials Using a Python Based Interface with Quantum Espresso
Thermodynamic Database Development with a Focus on Corrosion in Potential Nuclear Reactor Molten Salt Systems
Thermodynamic Modelling and Experimental Investigation of LiCl-NaCl-UCl3 and KCl-NaCl-UCl3 Systems
Thermophysical Properties of Key Binary Salt Systems using High-Sensitivity Twin Calvet Drop Calorimetry for Next Generation Molten Salt Reactors

Questions about ProgramMaster? Contact programming@programmaster.org