ProgramMaster Logo
Conference Tools for 2020 TMS Annual Meeting & Exhibition
Register as a New User
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Symposium
Meeting 2020 TMS Annual Meeting & Exhibition
Symposium Material Behavior Characterization via Multi-Directional Deformation of Sheet Metal
Sponsorship TMS Materials Processing and Manufacturing Division
TMS: Shaping and Forming Committee
Organizer(s) Daniel R. Coughlin, United States Steel Corp
Kester D. Clarke, Los Alamos National Laboratory
Piyush Upadhyay, Pacific Northwest National Laboratory
John E. Carsley, Novelis, Inc.
Scope Engineering sheet metals are customarily characterized by simple mechanical tests in order to meet mechanical properties given in OEM specifications. A set of uniaxial tension tests suffice to provide various standardized properties such as yield strength, ultimate tensile strength, strain hardening coefficient, Lankford coefficients, strain rate sensitivity and forming limits. However, when OEMs stamp a blank sheet to shape their final products, the materials experience quite complicated histories of straining paths that may significantly differ from behavior that is characterized by conventional mechanical tests. For example, sheet metals usually experience much higher strain rates, which may lead to phase transitions in the case of multiphase advanced high strength steels. Additionally, the amount of strain during a stamping process can far exceed what is typically obtained by the standard uniaxial tension test. Critical areas of a stamping often experience changes in the strain path.

The advanced constitutive models of today require material parameters obtained under multiaxial and complex loading conditions. Over the past decades, the sheet metal forming community has observed that such advanced constitutive models improve the predictive accuracy on formability and springback. However, in order to successfully train the models, unconventional experimental methods are often required. Here a list of notable experimental methods is given: 1) the cruciform test was designed to strain sheet metals in various stress ratios; 2) The tension-compression test was designed to provide a deformation history representing the bending and unbending of sheets during stamping; 3) The hydraulic bulge test is a widely spread method to obtain hardening curves to large levels of plastic strain, which standard uniaxial tests cannot provide; 4) Combination of non-coaxial loadings can provide various stress states, to which the phase transition is sensitive; 5) An experimental setup consisting of multiple steps with various pre-strainings is also practiced in order to observe constitutive behaviors under complex histories of deformation that may occur in typical industrial stamping processes; 6) High speed tests can subject the materials to a rate of speed similar to what is actually observed during the stamping process.

The objective of this symposium is to explore numerous advances in experimental testing and computational methods used for material characterization, constitutive modeling, and analyses pertaining to sheet metal deformation in multiple directions along multiple axes or with changing strain path conditions. Potential participants are encouraged to submit abstracts on research of material behavior related to microstructure based on multiple directional deformation including but not limited to: improvements and new methods of mechanical property measurement; characterization of phase transformations and deformation mechanisms in multiphase microstructures during forming; theory and modeling related to the mechanical properties; deformation simulations, forming processes, friction and springback; multi-directional mechanical testing and advanced strain/stress measurements; integration of scientific knowledge with manufacturing practices; and development of accurate constitutive relationships.

Abstracts Due 07/15/2019
Proceedings Plan Planned: Supplemental Proceedings volume

A New Yield Criterion Accounting for Anisotropy and Anisotropic Asymmetry from Near Isotropy to Triclincity
An Investigation into Improved Elongation-to-fracture in AHSS via Continuous Bending Under Tension
Damage Detection of Sheet Metal via Multi-directional Deformation
Development of a Lean Duplex TRIP Steel with a Superior Formability
Effects of Y Concentration on Mechanical Response of Mg-Y Alloys
Evolution of Local Formability Concepts for Advanced High Strength Steels (AHSS)
Experimental Studies into the Role of Cyclic Bending during Stretching of Dual-phase Steel Sheets
Formability of Textured Anisotropic Uranium Plate
High Precision Material Modeling of 5000 Series Aluminum Alloy Sheet Using Biaxial Tensile Tests and Hole Expansion Simulation
In-situ Neutron Diffraction of Strain Path Change Effects in Cold-rolled MgAZ31B Sheet
Industry Perspective on the Mechanical Characterization of Next Generation Steels
K-137 (Invited): Understanding Room Temperature Softening Behavior in AA5182
Large-strain Cruciform Testing for Characterization of Macro- and Micro-scale Formability of Sheet Metals
Material Modeling in Biaxial Stress Field and Hole Expansion Simulation of Hot-rolled Steel Sheets
Measuring the Multiaxial Nature of Thermomechanical Constitutive Relationships of Crystalline Materials
Microstructural Response of Stainless Steel Subjected to Biaxial Load Path Changes: In-situ Neutron Diffraction and Multi-scale Modeling
Microstructure Control for Enhanced Multi-step Formability
Modeling Anisotropic Plasticity Under Complex Loading Conditions: Effects of Loading Path Changes on Flow Stress, Springback and Formability of Sheet Metals
Modeling of Hole-expansion of Prestrained Sheets Using Distortional Hardening
Multi-directional Deformation Capabilities in the NIST Center for Automotive Lightweighting (NCAL)
Multiscale Modeling of Self-piercing Riveting Process
Production of Commercially Pure Aluminum Strips via a Single-Step, Machining-based Technique
Strain Localization and Damage in a α+β Titanium Alloy: A Study of Microstructure Heterogeneity and Strain Path Effects

Questions about ProgramMaster? Contact