ProgramMaster Logo
Conference Tools for MS&T23: Materials Science & Technology
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting MS&T23: Materials Science & Technology
Symposium High Temperature Corrosion and Degradation of Structural Materials
Presentation Title Environmental Creep Behavior of Austenitic Steels in CO2
Author(s) Richard P. Oleksak, Kyle A. Rozman, Ímer N. Doğan
On-Site Speaker (Planned) Richard P. Oleksak
Abstract Scope Austenitic stainless steels are leading candidate materials for constructing supercritical CO2 power cycles. Due to a combination of high temperatures (>600░C), high fluid pressures (>20 MPa), and long anticipated component lifetimes (>20 years), creep will likely be a main form of degradation. CO2 can produce high corrosion rates for steels due to simultaneous oxidation and carburization, however the effect of these processes on creep performance is not well understood. Of particular concern are thin-walled components such as compact heat exchangers, which may be more susceptible to CO2-induced degradation. Herein we performed environmental creep testing of 347H and 309H steel of various thicknesses (0.5-2.0mm) in gaseous CO2 and air at 650░C. Decreases in rupture life and ductility were found in several cases, while the effect of thickness was complex. Characterization suggests that carburization plays an important role. Understanding/quantifying these effects will be important for material selection for sCO2 power cycles.

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

Ablation Resistance of Ultra-high Temperature Polymer-derived Ceramic-matrix Composites
Comparison and Mechanism of High-temperature Oxidation Behavior of Additively Manufactured Haynes 282 to Wrought Haynes 282 in Direct-fired Supercritical CO2 Power Cycle Environments
Corrosion Behavior of Compositionally Gradient Additively Manufactured 316L Stainless Steel Doped with Hafnium in Eutectic NaCl-MgCl2 Molten Salt at 700 °C
Cyclic Oxidation of NbTiZr Using a Resistive Heating System
Development of Ablation-Resistant, High Emittance Coatings for Carbon/Carbon Composites for Hypersonic Application
Discovery of High Entropy Rare Earth Disilicates for Extreme Environments
Effect of Gaseous Environments and Alloy/Coatings Composition on the Mixed Deposit-induced Degradation of Advanced Alloys/Coatings
Effect of Temperature and Impurities on the Oxidation Behavior of Ni-based Alloys in Hot CO2-rich Gases
Environmental Creep Behavior of Austenitic Steels in CO2
Evaluating Corrosivity of Molten Salts Using Halide Optical Basicity Index
Evolution of Interfacial Morphogenesis and Stability of Alloys in Harsh Environments
High-throughput Investigation of Microstructure & High Temperature Oxidation Behavior of CrMoNbTaW
High Temperature Materials Study for HCl+SO2 and HF+P2O5 Environments
High Temperature Oxidation Behavior of Zr vs ZrC
Impact of Environmental Barrier Coating Chemistries on the Oxidation of Si-base Materials
Intermediate Temperature Oxidation of Melt Infiltrated SiC/BN/SiC CMCs
Investigating Fifth Oxide Effect on CMXAS Glass Properties
Liquid Metal Embrittlement Assessment of F82H in Li
On the Thermodynamic Properties of CrTaO4: A Computational Perspective
Oxidation and Hot Corrosion Performance of Fe-Cr-Ni Based Alloys
Oxidation of Additively Manufactured AM-ZrB2-30vol%SiC under CO2 Exposure
Oxidation of B2-(Ru,Pd)Al Alloys for Bond Coat Applications
Solid Particle Erosion of Ceramic Matrix Composites and Environmental Barrier Coatings: Current Progress and Future Direction
Stress Assisted Corrosion Behavior of Al0.1CrCoFeNi High Entropy Alloy in a Molten NaCl-Na2SO 4 Salt
Surface Coatings Providing Protection Against High Temperatures and Corrosion in the Production of Coke
T91 Boiler Tube Oxidation Performance and Oxide Spallation in Supercritical Steam Thermal Cycling Conditions
Thermophysical Properties of Xenotime Inspired Rare Earth Phosphate EBCs

Questions about ProgramMaster? Contact programming@programmaster.org