ProgramMaster Logo
Conference Tools for Materials Science & Technology 2020
Register as a New User
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting Materials Science & Technology 2020
Symposium Engineering Ceramics: Microstructures, Properties, and Applications
Presentation Title Effect of Hot Forging on The Mechanical and Thermal Properties of Fine-grained SiC-TiC Composite
Author(s) Rohit Malik, Young-Wook Kim
On-Site Speaker (Planned) Rohit Malik
Abstract Scope We herein propose a novel technique of fabricating highly deformable SiC composites. The deformability of brittle SiC ceramics can be improved by reinforcing it with a second phase with low brittle to ductile transition temperature (BDTT), such as TiC (BDTT- 800 C). Fine-grained monolithic SiC and SiC-20 vol% TiC composite were prepared by hot pressing via a two-step liquid phase sintering technique. The hot-pressed SiC-20 vol% TiC composite exhibited two times higher strain than the monolithic SiC after hot forging at 1900 C. High deformation resulted in improved density, mechanical and thermal properties for the SiC-20 vol% TiC composite. The flexural strength, fracture toughness, and thermal conductivity of the hot-pressed SiC-20 vol% TiC composite were 608 MPa, 5.1 MPam1/2, and 34.6 Wm-1K-1, respectively which increased to 777 MPa, 7.8 MPam1/2, and 74.7 Wm-1K-1, respectively after hot forging. The hot-forged composite exhibited anisotropic properties attributed to the anisotropy in the microstructure.


Characterizing the Flexural Strength of Nanocrystalline Ceramics and Associated Challenges
Control of Electrical Conductivity in Liquid-phase Sintered Silicon Carbide Ceramics
Effect of Hot Forging on The Mechanical and Thermal Properties of Fine-grained SiC-TiC Composite
Influence of Three-dimensional Microstructure on the Impact Response of Advanced Ceramics
Introductory Comments: Engineering Ceramics: Microstructure-Property-Performance Relations and Applications
New Insights into Deformation Mechanisms of Amorphous Silicon Nitride Nanoporous Membranes from Atomistic Simulations

Questions about ProgramMaster? Contact