ProgramMaster Logo
Conference Tools for MS&T21: Materials Science & Technology
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Symposium
Meeting MS&T21: Materials Science & Technology
Symposium Additive Manufacturing of Metals: ICME Gaps: Material Property and Validation Data to Support Certification
Sponsorship TMS: Integrated Computational Materials Engineering Committee
TMS Additive Manufacturing Bridge Committee
Organizer(s) Joshua Fody, NASA Langley Research Center
Edward Glaessgen, NASA Langley Research Center
Christapher Lang, NASA Langley Research Center
Greta Lindwall, KTH Royal Institute of Technology
Michael Sansoucie, Nasa Marshall Space Flight Center
Mark R. Stoudt, National Institute of Standards and Technology
Scope Metallic additive manufacturing (AM) technology has achieved significant advancement toward industrial maturity in recent years; however, challenges related to certification have inhibited the widespread adoption of this manufacturing capability in key industries such as transportation. For several years now, there has been a push within government and academia to establish high fidelity physically correct process models to support certification. Much advancement has been realized in the development of models toward the simulation of the metallic AM process; however, the lack of consistent and available high temperature material property and model validation data remains a roadblock. Empirical measurements are often difficult or impossible to obtain; alone, they can often only provide proof of a processing effect but not an understanding of the cause. Ideally, simulation and measurement can be coordinated to provide a complete understanding of the AM process, and increase confidence and availability in quality part properties and performance variability predictions. Such improvements are necessary to enable the implementation of cost-effective certification paradigms for load critical AM parts.


By identifying the data needs most consequential to AM process model predictions, new measurement capabilities or techniques tailored to AM can be targeted and developed. High temperature material properties data for metals are largely unavailable in literature; and, in some cases properties are available but are inconsistent between sources. Furthermore, by identifying key model validation data gaps, resources can be prioritized to enhance measurement capabilities and collect data in quantities sufficient to characterize the high variability notorious in as-built AM parts. Ensuring that the most important high quality and consistent measurements are available in a publicly available standardized database facilitates efforts toward certification and promotes the widespread adoption of additive manufacturing.
The main objective of this symposium is to bring experts and information together to discuss potential development of a standardized government facilitated material properties and model validation database to support improved process modeling predictions toward certification of additively manufactured metallic parts for load critical applications. Topics for discussion and abstract solicitations include:

- Alloys of interest for certification efforts and current data gaps
- Identification of material properties with the largest impacts on process model predictions
- Model validation data needs
- Current measurement capabilities for material properties at temperatures of interest
- Current sources of validation data (in-situ monitoring, DXR, micrographs, etc.)
- Challenges to and roadmap for the potential development for such a standardized database (IP considerations, roles and responsibilities, database formats, etc.)

Abstracts Due 04/15/2021
PRESENTATIONS APPROVED FOR THIS SYMPOSIUM INCLUDE

An Analysis of the Dislocation Density of Inconel 718 Additive Manufacturing Powder
An ICME Approach for Designing Appropriate Heat Treatments in Additively Manufactured Nitrogen Atomized 17-4PH Stainless Steel
Capturing and Analyzing In-situ Data within the Directed Energy Deposition Process with DEDSmart
CFD Modelling for AM Processes
Critical Issues and Gaps in Testing and Characterization Data for Computational Materials in Qualification and Certification of Additively Manufactured Metallic Materials
Determining Data Requirements to Quantify Porosity in the Laser Powder Bed Fusion Process
Enabling Quality Assurance by Completing the Process-Property-Performance Paradigm for Additive Manufacturing
Experimental and Numerical Investigation of Pressureless Sintering for Binder Jetted Metal Parts
High Temperature Material Properties Measurement Capabilities of the NASA MSFC Electrostatic Levitation (ESL) Laboratory
High Temperature Material Property Data and Challenges to Thermal Process Model Predictions and In-Situ/Ex-Situ Measurements for Metallic Additive Manufacturing
ICME Gap Analysis for Materials Design and Process Optimization in Additive Manufacturing
ICME Gaps for Additive Manufacturing of Metals
Laser Energy Coupling during Metal Additive Manufacturing
Lessons Learned from Calibration and Validation of Process Models for Laser Powder Bed Fusion
Methods for Improved Part-scale Thermal Process Simulations in Laser Powder Bed Fusion
On Scan Path Knowledge for Model Informed Process Planning and Material Quality Predictions
Phase Field Informed Monte Carlo Texture Evolution Models for Additive Manufacturing Microstructure Simulation and the Need for Experimental Grain Competition Data
Predicting Melt Properties Using Atomistic Simulations with a Highly Accurate Physically Informed Neural Network Interatomic Potential
Providing a Rigorous Measurement Foundation for Modeling-Informed Qualification and Certification of Metal AM Components
Transferability of Terrestrial Development of Metal Additive to Extraterrestrial Applications


Questions about ProgramMaster? Contact programming@programmaster.org