ProgramMaster Logo
Conference Tools for 2023 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2023 TMS Annual Meeting & Exhibition
Symposium Quantifying Microstructure Heterogeneity for Qualification of Additively Manufactured Materials
Presentation Title Towards Validation of Thermo-mechanical Finite Element Modeling of the Additive Manufacturing Solidification Process
Author(s) William D. Musinski, Paul Shade, Edwin Schwalbach
On-Site Speaker (Planned) William D. Musinski
Abstract Scope Next generation material advancements in the defense and energy sectors will be obtained by integrating novel characterization tools, modeling tools, and machine learning to advance our understanding of the intimate, location-specific connection between processing, structure, and properties of these materials. As a building block towards this realization, this presentation describes the integration of synchrotron X-ray diffraction measurements, finite element simulations, and machine learning techniques for the development of residual stresses in additively-manufactured (AM) thin wall nickel superalloy plates built with a range of dimensions. Local thermal histories informed by a fast acting discrete source model are used as inputs for the thermo-mechanical finite element modeling of the AM solidification process. The residual stresses induced during the solidification process are then compared to energy-dispersive X-ray diffraction measurements of the as-built plate structures. Perspectives on integration of X-ray diffraction experiments, modeling, and machine learning, and the current technology gaps will be discussed.
Proceedings Inclusion? Planned:
Keywords Additive Manufacturing, ICME, Solidification

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

3D Computer Vision and Deep Learning for Porosity Analysis in Additive Manufacturing
A Study of Microstructural and Mechanical Properties of 14YWT Oxide Dispersion Strengthened Steel Fabricated Using Laser Powder Bed Fusion Additive Manufacturing from Gas Atomized Reaction Synthesis Feedstock
Additive Manufacturing Beyond the Gaussian Beam: Insights from Microstructure-based Modeling Studies
Build Geometry and Parameter Influence on Alloy 718 Microstructure, Properties and Spatial Variation in Additive Manufacturing
Characterization of Titanium Additions in Selectively Laser Melted High-strength Aluminum Alloy by Correlative X-ray and Electron Microscopy
Control of Residual Stress and Distortion in Metal Additive Manufacturing via Inverse Mapping of Textures
Correlative Modeling of Laser Powder Bed Fusion Surface Characteristics to Internal Defects
Effects of Laser Process Parameters on Denudation Zone Width in Laser Powder Bed Fusion Additive Manufacturing
Effects of Processing Conditions and Build Geometry on Microstructure Development in Laser Powder Bed Fusion and Wire Arc Additively Manufactured 316L
Heterogeneous Microstructure and Location-specific Mechanical Performance of Ti-6Al-4V Parts Made by Laser Directed Energy Deposition
In Situ Monitoring of Recrystallization during Laser Powder Bed Fusion of 316L Stainless Steel by Means of Synchrotron X-ray Diffraction
Intentionally Seeding Pores in Laser Powder Bed Fusion IN718: Microstructure, Defects, and Fatigue
Large-scale Image Analysis of Melt Pools in Complex Additively Manufactured Artifacts
Location Specific Characterization of Additively Manufactured Stainless Steel to Inform Build Data Analytics
Long-term Process Stability in Laser Powder Bed Fusion
Microstructural and Mechanical Validation of Thin-walled Additively Manufactured Inconel 625
Microstructure and Mechanical Property Variations in Commercially Produced Laser Powder Bed Fusion 316L Stainless Steel
Microstructure Evolution According to Heat Treatment Design of Alloy 625 Produced by Selective Laser Melting
NASA’s Approach on the Evaluations of “Material Engineering Equivalence” Methodology in Achieving and Sustaining Efficient Qualification and Certification of AM Materials and Parts
Opportunities & Challenges with Laser Powder Bed Fusion for Automotive Applications: Steel and Aluminum Alloys
Optimizing Creep Performance of Haynes 282 Printed via Laser Powder Bed Fusion through Microstructure Control
Predicting Crystallographic Texture in Laser Powder Bed Fusion via a Machine Learning Approach
Quantification of Microstructural Heterogeneities in Additively Manufactured and Heat-Treated Haynes 282
Quantitative Analysis of Computed Tomography Characterization of Porosity in AM Ti64 Using Serial Sectioning Ground Truth
Quantitative Analysis of Low Concentration Elements at the Nanoscale in Additively Manufactured Alloys
Strategizing with Hot Isostatic Pressing Treatments to Increase Productivity during Post-processing of Laser-melted Inconel 718 Parts
Strong Impact of Minor Elements on the Microstructural Evolution of an Additively Manufactured Inconel 625 Alloy
Synchrotron-based X-ray Microtomography Characterization of Solidification Cracks in Additively Manufactured IN738LC Alloy
The Impact of Volumetric Energy Density on Mechanical Properties of Additively Manufactured 718 Ni Alloy
Towards Validation of Thermo-mechanical Finite Element Modeling of the Additive Manufacturing Solidification Process
Use of Profilometry-based Indentation Plastometry (PIP) to Study Inhomogeneities in Additively Manufactured Components
X-ray Diffraction Peak Estimation Using In-Situ Melt-pool Sensors

Questions about ProgramMaster? Contact programming@programmaster.org