ProgramMaster Logo
Conference Tools for MS&T23: Materials Science & Technology
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting MS&T23: Materials Science & Technology
Symposium Ceramics and Glasses Modeling by Simulations and Machine Learning
Presentation Title An ICME Approach for Short Fiber Reinforced Ceramic Matrix Composite via Direct Ink Writing
Author(s) Jason Sun, James Chen
On-Site Speaker (Planned) Jason Sun
Abstract Scope A manufacturing driven ICME framework for short fiber reinforced ceramic matrix composites via direct ink writing is proposed. Information about both the aspect ratio and orientation of the fibers is obtained from the printing process. Given this information, representative volume elements are established to provide material properties of the composite. With the fiber orientations expressed as Euler angles, the effective mechanical and thermal material properties can be calculated and then mapped onto a global geometry for finite element analysis (FEA). The FEA model is implemented in MOOSE. The model consists of four coupled modules: phase field for damage, elasticity, heat transfer, and material twinning. The effects of short fibers’ aspect ratios and alignment orientations on material performance are discussed.

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

A B-C Story, Investigated by A.I. and CALPHAD
An ICME Approach for Short Fiber Reinforced Ceramic Matrix Composite via Direct Ink Writing
Atomistic Perspectives in Characterizing Crystalline Defect Formation in Amorphous Silicon Nitride
Combining Experimental and Simulation Datasets in Machine Learning for Glass Properties Prediction
Comparison of Core Level Chemical Shift in CH3NH3PbBr3 Perovskite Due to Surface Terminations and Orientations of CH3NH3 Ion
D-10: Unraveling the structure and mechanical properties ZIFs and its topological equivalents: Large scale simulations
D-9: Discrete Element Simulation of Delamination in Thermal Barrier Coating
Decoding the Structural Genome of Silicate Glasses
Defect Chemistry and Electrical Properties of Doped BaTiO3
Development of a Machine Learned Interatomic Potential for Shock Simulations of Boron Carbide
First-Principles Modeling of Thermodynamics and Kinetics of Thin-Film Tungsten Carbides
Fracture Resistance of Rare-earth Phosphates as Environmental Barrier Coatings under CMAS Corrosion
Generation of Spectral Neighbor Analysis Potentials for Alpha Boron and Comparison of the Results with the Angular Dependent Potential
Lithium Dopant and Surface Effects on the Band Gap of Calcium Hexaboride (CaB6) Using DFT Methods
Machine Learning Prediction of Heat Capacity for Solid Mixtures of Pseudo-binary Oxides
Using Deep Learning to Develop a Smart and Sustainable Cement Manufacturing Process

Questions about ProgramMaster? Contact programming@programmaster.org