ProgramMaster Logo
Conference Tools for 2021 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2021 TMS Annual Meeting & Exhibition
Symposium Hume-Rothery Symposium: Accelerated Measurements and Predictions of Thermodynamics and Kinetics for Materials Design and Discovery
Presentation Title High-throughput Testing and Characterization of Novel Additive Manufactured Materials
Author(s) Madelyn Madrigal-Camacho, Adam Freund, Kendrick Mensink, Guillermo Aguilar, Suveen N. Mathaudhu
On-Site Speaker (Planned) Suveen N. Mathaudhu
Abstract Scope Critical to the future advancement of additive manufacturing (AM) technologies is the exploration of fundamental laser-material interaction paired with informed alloy powder development. The large-scale and "black-box" nature of commercial 3D printers limits the ability to pursue such studies due to powder and process control limitations. In this work, we will present our efforts to literally, out-of-the-box, probe fundamental AM process-microstructure-property correlations. The primary tool to pursue this consists of a suite of lasers in pump-probe configurations that interact with small (5g-10g) of layered powder materials in a controlled atmosphere, heated environment. The resulting densified materials can be interrogated for density, hardness, phase structures (XRD) and microstructural evolution, and other physical properties with a minimal volume of material. Further, novel alloy compositions can be rapidly and easily explored. Preliminary examples of this approach will be presented for conventional AM alloy compositions along with novel nanocrystalline alloy printed materials.
Proceedings Inclusion? Planned:
Keywords Additive Manufacturing, Characterization, Powder Materials

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

A Diffusion Mobility Database for γ/ γ' Co-Superalloys
A Tale of Two Approaches: From Phase Equilibria to Materials Properties
A Thermodynamic and Molar Volume Database for Co-base Superalloys
An Atom-Probe Tomogaphy Study of the Temporal Evolution of Concentration Retention Excesses and Depletions at gamma-f.c.c/gamma-prime-L12 Interfaces in a Ni-Al-Cr-Re Superalloy
An Integrated Computational Materials Engineering (ICME) Framework for Additive Manufacturing (AM) of Ni-based Superalloys
Combinatorial Design of High-entropy Alloys
Computational Modeling-assisted Development of Cast Alumina-forming Austenitic Stainless Steels for High Temperature Corrosive Environments
Computational Thermodynamics and Its Applications
Design of Cobalt Base Superalloys for 3D Printing
Emerging Capabilities for the High-throughput Characterization of Structural Materials
Extended Applications of the CALPHAD Simulations
Genomic Materials Design: From CALPHAD Data to Flight
High-throughput Experiments and Machine Learning Modeling for Designing Next Generation Superalloys
High-throughput Hot-isostatic-pressing Micro-synthesis for Accelerated Studies of High Entropy Alloys
High-throughput Synthesis, Characterization and Prediction of Metallic Glass Formation
High-throughput Testing and Characterization of Novel Additive Manufactured Materials
Insights from a Comprehensive Assessment of Diffusion Coefficients of 20 Binary Systems and a Comprehensive Diffusion Mobility Database for Magnesium Alloys
Integrated Predictive Materials Science: Filling the ICME Pipeline
Integration of Computational Tools and Advanced Characterization Methods to Understand Phase Transformations in Additively Manufactured Steels
Introductory Comments: Hume-Rothery Symposium: Accelerated Measurements and Predictions of Thermodynamics and Kinetics for Materials Design and Discovery
Machine Learning-assisted ICME Approaches to Explore the Alloy and Process Space in Metals Additive Manufacturing
Modeling of Diffusion and Intermetallic Phase Formation in Al-Mg Bimetallic Structures
Multi-cell Monte Carlo Method for Phase Prediction
Phase Stability and Kinetic Considerations in Materials Processing and Performance
Phonon Anharmonicity Causes the Large Thermal Expansion of NaBr
Printability and Properties of Metallic Alloys for Laser Powder Bed Fusion Additive Manufacturing
Some Properties if the Multicomponent Diffusivity Matrix
Unexpected Phenomena Observed in Metallurgical Studies
Visualizing and Rationalizing Synthesis Pathways in Oxides
William Hume-rothery Award Lecture: High-throughput Measurements of Composition-dependent Properties of Alloy Phases for Accelerated Alloy Design

Questions about ProgramMaster? Contact programming@programmaster.org