ProgramMaster Logo
Conference Tools for 2023 TMS Annual Meeting & Exhibition
Register as a New User
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2023 TMS Annual Meeting & Exhibition
Symposium Ceramic Materials for Nuclear Energy Research and Applications
Presentation Title Radiation studies on the TiZrNbHfTa high entropy alloy and its hydrides.
Author(s) Christopher Moore, Alberto Fraile, Caitlin A. Taylor, Michael J. D. Rushton, Simon C. Middleburgh
On-Site Speaker (Planned) Christopher Moore
Abstract Scope High entropy alloys have been of growing interest for structural, aerospace, and nuclear applications ever since they were first conceptualised in 2004. A few of the documented properties that highlight them as potential candidates for these industries include high strength, corrosion resistance and potential radiation damage resistance. The TiZrNbHfTa high entropy alloy has been the subject of multiple reports exploring high temperature structural applications, although a surprising lack of previous literature on radiation damage and recombination effects is noted. To account for this, computational methods have been implemented to provide a mechanistic understanding of how this system can be expected to perform during, and how it may recover from, radiation damage events. The results of this analysis will act as a basis on which an experimental irradiation study will be planned, thus working to validate the computational model, and establishing the potential of this system as a nuclear material.
Proceedings Inclusion? Planned:
Keywords High-Entropy Alloys, Computational Materials Science & Engineering, Nuclear Materials


Advanced Characterization and Modeling of Nanoprecipitates in Spent Nuclear Fuel
Atomic scale simulation of amorphous intergranular films in nuclear fuel materials
Atomistic-scale simulations used to simulate creep in oxide fuel
Atomistic and mesoscale modeling of fission gas and fission products diffusivity in TRISO fuel kernels
Atomistic investigation of radiation-induced defects in ThO2
Cluster dynamics modeling of defects and fission gas in Gd doped UO2 under irradiation
Comparison of the electronic transport of UN and ThN versus ThC
Comprehensive characterization of damage in ion irradiated ceramics for validation of atomistic models
Defect chemistry and radiation stability of (Gd & Zr) co-doped UO2
Development of UC/UO2 Composite Fuels for Light Water Reactors
Diffusion properties in uranium-plutonium mixed oxides: atomic scale investigation of the effect of composition and chemical disorder
Emulation of Microstructures and Tritium Behavior in Lithium Aluminate by Ion Irradiation
Hidden defect evolution mechanism in ThO2 revealed by atomistic modeling
High-Entropy Carbide Ceramics: New Materials for Extreme Environments in Nuclear Energy Applications
Impact of Resonance Scattering on the Thermal Conductivity of ThO2
Improving uranium mononitride behaviour using uranium diboride addition
Irradiation- and dopant-induced structural changes in ceramic nuclear fuels probed via elastic and optical properties
Low-temperature fabrication of ceramic tritium breeder materials, for enhanced control of microstructure and phase formation
Microstructural characterization of neutron irradiated concrete minerals
Microstructural, Mechanical and Thermal Characterization of High Entropy Carbide Ceramics
Modelling the melting temperature of CrUO4 to assess its behaviour during the sintering of Cr-doped UO2
Multiphysics Modeling of High Burnup UO2 at Mesoscale
Multiscale Modeling for High-burnup Structure Formation in UO2
Oxidation Behavior and Mechanisms of the SiC Coating in TRISO Fuel Particles
Phase equilibria and thermodynamics of tri-carbide fuels for nuclear thermal propulsion
Predicting mechanical behavior of Uranium oxide fuel pellets using full-field defect diffusion modeling in a crystal plasticity framework
Quantifying irradiation-induced defects in SiC and WC through stored energy measurements of radiation damage
Quantifying the impact of fast interface diffusion and free surface evolution on fission gas release in UO2 using a phase-field model
Radiation Damage in Lithium Oxide, a Surrogate for Beryllium Carbide
Radiation damage of ion-irradiated high entropy ceramics
Radiation shielding ceramics with enhanced performance and scalability
Radiation studies on the TiZrNbHfTa high entropy alloy and its hydrides.
Relating Microstructural Evolution and Stoichiometry to Tritium Release from Ternary Lithium Ceramics
Revealing The Microstructure and Irradiation Effects on UO2 Fracture Via Coupled Phase-Field and MD Simulations Approach
Scanning Transmission Electron Microscopy of Nanoprecipitates in Spent UO2 Nuclear Fuel
Silica Formation on SiC Following Steam Attack
Simulation of irradiation-induced bubble over-pressurization and application in fuel performance
Soft X-ray Synchrotron Radiation Spectromicroscopy of Spent Nuclear Fuel Focused Ion Beam Sections
Surface Modification Strategies for Hydrogen Retention in Hydride Moderators
Susceptibility of Nuclear Fuel Ceramics to Oxidation and Hydridization during Off Normal Events
Thermomechanical characterization of advanced reactor alloys and composites exposed to high-temperature gas environments
Uranium Silicide Processing for Advanced Reactors
Zirconia-coated uranic fuel particles processing and in situ sintering characterisation

Questions about ProgramMaster? Contact