ProgramMaster Logo
Conference Tools for 2022 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2022 TMS Annual Meeting & Exhibition
Symposium REWAS 2022: Recovering the Unrecoverable
Presentation Title Pre-study of the Dissolution Behavior of Silicon Kerf Residue in Steel
Author(s) Adamantia Lazou, David Nilssen, Mertol Gökelma, Maria Wallin, Gabriella Tranell
On-Site Speaker (Planned) Adamantia Lazou
Abstract Scope Silicon kerf residue is generated during the wafering process of pure silicon in the photovoltaic value chain. The generated by-product has a high volume, and the particle size is typically below 1 μm. Although the fine particle size promotes oxidation, it can be beneficial from many metallurgical aspects. This work studies the behavior of silicon kerf in low alloy steel melts with aim to upcycle the kerf material in the steel industry for different purposes. Depending on the interaction with the medium, particles may be used as an inoculant agent or an alloying element. The steel alloy and the kerf were melted in an alumina crucible placed in an induction furnace. The studied parameters were the charging procedure, the amount of kerf, and the temperature. The behavior of the particles in the solidified alloy was characterized by using an optical microscope, Scanning Electron Microscope (SEM), and energy-dispersive X-ray spectroscopy (EDS).
Proceedings Inclusion? Planned:
Keywords Iron and Steel, Pyrometallurgy, Recycling and Secondary Recovery

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

A Green Process to Acquire a High Purity Rare Earth Elements Leach Liquor from Nd-Fe-B Magnets by Caustic Digestion and Roasting Processes
Adaptability of the ISASMELT™ Technology for the Sustainable Treatment of Wastes
An Innovative Separation Process for Spent Lithium-ion Battery Using Three-stage Electrodialysis
BlueMetals Technology – Experience from Commissioning E-Scrap Recycling Plants
Characterisation of Hyperaccumulators for Lithium Recovery from Ancient Mine Soils
Characterization and Thermal Treatment of Eggshell and Olive Stones for Heavy Metals Removal in Mining Environmental Liabilities Sites
Characterization and Thermal Treatment of Electric Arc Furnace Dusts Generated during Steel Production in Peruvian Industries
Deoxidation of Titanium Using Cerium Metal and Its Oxyhalide Formation
Development of Technology for Recycling Large-capacity Lithium-ion Batteries for EV,ESS
Efficient Steel Mill Dust Recycling – Aiming For Zero Waste
Estimation of the Generation and Value Recovery from E-waste Printed Circuit Boards: Bangladesh Case Study
Extraction of Nickel from Recycled Lithium-ion Batteries
Investigation of Hydrometallurgical Recycling Parameters of WC-Co Cutting Tool Scraps
Leaching of Rare Earth Elements from Phosphogypsum Using Mineral Acids
Maximizing the Efficiency of By-product Treatment by Multi Metal Recovery and Slag Valorization
Physicochemistry of Lithium-ion Battery Recycling Processes
Pre-study of the Dissolution Behavior of Silicon Kerf Residue in Steel
Recent Trend on the Studies of Recycling Technologies of Rare Earth Metals
Recovery of Copper, Iron and Alumina from Metallurgical Waste by Use of Hydrogen
Recovery of Precious Metal Silver from Scrap Computer Keyboards
Recovery of Terbium, Europium, and Yttrium from Waste Fluorescent Lamp Using Supercritical Fluid Extraction
Recycling of Electronic Wastes, Waste Batteries and Rare Metal Wastes in China
Recycling of Tungsten by Molten Salt Processes
Recycling Technologies Developed at KIGAM
Setting New Standards for Circular Economy in the Cement Industry
Shifting the Burden of Selectivity from Chemical to Physical Separation Processes via Selective Sulfidation
Utilization of Copper Nickel Sulfide Mine Tailings for CO2 Sequestration and Enhanced Nickel Sulfidization
Yellow Phosphorus Production from Phosphoric Acid by Carbothermic Reduction

Questions about ProgramMaster? Contact programming@programmaster.org