ProgramMaster Logo
Conference Tools for 2021 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2021 TMS Annual Meeting & Exhibition
Symposium Thermal Property Characterization, Modeling, and Theory in Extreme Environments
Presentation Title Mesoscale Modeling of the Effective Thermal Conductivity of a UO2-Mo Composite Nuclear Fuel
Author(s) Karim Ahmed, Fergany Badry
On-Site Speaker (Planned) Karim Ahmed
Abstract Scope The effective thermal conductivity of nuclear fuels strongly depends on the underlying microstructure. We developed a novel mesoscale model to investigate this relationship in UO2-Mo fuel composites. The model accounts for the thermal resistance of the UO2-Mo interface and able to predict the effective conductivity of the fuel for different fuel compositions, microstructures, and temperatures. The model has been implemented in the MOOSE framework. The model predicts higher effective thermal conductivity of UO2- Mo fuel for microstructures with continuous distribution of second phase than microstructures with dispersed second phase particles for the same volume fraction and temperature. The model results agree well with the experimental data from literature.
Proceedings Inclusion? Planned:

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

First-principles Modeling of High Temperature Irradiation Resistant Thermocouple (HTIR-TC) Performance and Oxidation
A Thermodynamically-consistent Model for Heat Transport in Heterogeneous Solids
An Experimentally Validated Mesoscale Model for the Effective Thermal Conductivity of U-Zr Fuels
Atmosphere Controlled Thermogravimetric Analysis as a Tool to Screen, Test and Qualify Advanced Fuels under Extreme Conditions
Defect Density and Annealing Kinetics Estimation Using Thermal Diffusivity Measurements from Transient Grating Spectroscopy
Energy Balance Investigation of Close-coupled Optimized-pressure Gas Atomization Pour-tube Design Geometry to Prevent Melt Freeze-off
Mesoscale Modeling of the Effective Thermal Conductivity of a UO2-Mo Composite Nuclear Fuel
Multiphysics Mesoscale Modeling of Ablative Thermal Protection Systems
Non-magnetic Kondo Effect in Eelta-UZr2
Performance of UO2 Reactor Fuel with High Thermal Conductivity Additives
Phase-dictated Thermal Conductivity Response in Carbon Systems Exposed to Ion Irradiation
Phonon Transport in ThO2 from Neutron Scattering and First-principles Computation
Theory of Non-equilibrium Thermal Transport at High Temperatures from First-principles
Thermal and Mechanical Properties of Hafnon (HfSiO4), Theory and Experiments
Thermal Behaviors of Correlated Insulators ThO2 and SmB6
Thermal Conductivity and Heat Transport Processes of Ion Irradiated and Laser Heated Solids
Thermal Conductivity Degradation from Irradiation-induced Microstructural Defects in Single Crystal Thorium Dioxide
Thermal Gradient Effect on the Transport Properties of Helium and Intrinsic Defects in Tungsten
Thermal Stability of Metallic Multilayers with TripleJjunctions
Thermal Transport Behavior of U-50Zr at the Mesoscale: Before and After Irradiation
Thermal Transport in Irradiated ThO2: A Combined Experimental and Phonon Level Investigation
Ultra-high Lattice Thermal Conductivity and the Effect of Pressure in Superhard Hexagonal BC2N

Questions about ProgramMaster? Contact programming@programmaster.org