ProgramMaster Logo
Conference Tools for MS&T23: Materials Science & Technology
Register as a New User
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Symposium
Meeting MS&T23: Materials Science & Technology
Symposium Additive Manufacturing of Ceramic-based Materials: Process Development, Materials, Process Optimization and Applications
Sponsorship ACerS Basic Science Division
ACerS Engineering Ceramics Division
ACerS Manufacturing Division
Organizer(s) Xuan Song, University of Iowa
Lei Chen, University of Michigan-Dearborn
Xiangyang Dong, Missouri Univ of Science and Technology
Yiquan Wu, Alfred University
Paolo Colombo, University of Padova
Rajendra K. Bordia, Clemson University
Long-Qing Chen, Pennsylvania State University
Scope The wide-use of advanced ceramic-based materials depends on the availability of industrial processing routes to fabricate parts with required geometries. However, it is still challenging for current manufacturing methods to produce complex shaped ceramic parts with the desired microstructures and properties. Additive Manufacturing (AM) or 3D printing is a fast-growing technique for fabricating parts layer-by-layer directly from 3D digital models. AM has tremendous potential for producing high-value, complex, individually customized parts. While AM technologies for ceramics have been extensively explored in the past decade, additively shaping ceramic materials with high performance and high reliability remains challenging, due to their inherent brittleness and stringent processing requirements (feedstock and/or sintering). As more technological progress continues in the field, it can be expected that AM technologies will have an extraordinary impact on the industrial production of ceramic components and will open up new possibilities for ceramics uses and markets.

This symposium will highlight recent advances in additive manufacturing of ceramic-based materials. The topics of presentations are sought to include but not limited to:

1. Hybridized processes for ceramic-based materials based on established technologies (Sheet Lamination, Powder Bed Fusion, Directed Energy Deposition, Material Jetting, Binder Jetting, Binder Jetting, Material Extrusion), and novel approaches;

2.Computational and experimental investigations of process-microstructure-property relations, including but not limited to multiscale multi-physics computational modelling, and in-situ and ex-situ characterization of grain structures, porosity, surface roughness, structural and functional properties for AM-fabricated ceramics and ceramics composites;

3. Data-driven process optimization and quality control of AM ceramic-based components, e.g., based on surrogate models, uncertainty quantification, machine learning and deep learning technologies;

4. Novel applications of AM ceramic-based components.

Abstracts Due 05/08/2023

A Novel Integrated Additive Manufacturing and Laser Processing Method for Protonic Ceramic Energy Devices
Additive Continuous Microwave Sintering for Lunar Construction
Additive Manufacture of Cordierite Ceramic Materials via Digital Light Processing
Additive Manufacturing of Solid-state Electrolytes for Lithium Metal Batteries
Aqueous Slurry Development and Characterization for Multiple-Oxide Direct Ink Writing
Ceramic 3D Printing Utilizing Binder Jetting Technology for Medical Uses
Challenges and Future Directions for Ceramic Additive Manufacturing in Incorporation of Fiber Reinforcements and Machine Learning Strategies
Custom Manufacturing of Shape-conforming Battery Components Using VPP
Direct Ink Writing of Semiconductive Oxide-based Sensors for High-temperature Applications
Evaluation of Calibration Measurements for Accelerated Development of Ceramic Vat Photopolymerization Process and Post-process Parameters
Fused Deposition Modeling of Polycarbosilane to Manufacture Silicon Carbide-based Materials
Hydrothermal-assisted Jet Fusion: A Selective Cold Sintering Approach
Laser Powder Bed Fusion of Tungsten Carbide-Nickel Geometries Leveraging Thermomechanical Modeling
Learning and Challenges to Scale Ceramics Additive Manufacturing to Industrial Scale
Materials Development for Demanding Applications with Binderjet WC-Co
On the Thermal Shock Resistance of Additively Manufactured Aluminum Oxide
The Influence of Print Layer Orientation on the Mechanical Properties of SIC and CF/SIC CMCS Formed via Direct Ink Writing
Ultra-fast Laser Sintering of Ceramics and Glasses, and Machine Learning-based, Processing-microstructure-property Predictions for Laser-sintered Ceramics and Glasses
Use of Powder Bed Fabrication Processes for Ceramic Additive Manufacturing

Questions about ProgramMaster? Contact