Scope |
Growth in materials diversity for metals-based additive manufacturing (AM) is becoming increasingly important due to the challenges associated with achieving controllable microstructures and properties in technically relevant alloys, such as conventional steels (i.e., 316L stainless steel), aluminum alloys such those based on Al-Cu-Mg-Sc-Si, Ni-Cr–based superalloys (Inconel 718/625), and titanium alloys (largely Ti-6Al-4V). There is an increasing need to develop new materials feedstocks that are better suited to take advantage of AM processes and their parameters. New alloys for structural and biomedical applications, high-strength and high-radiation-resistant alloys, and hierarchically graded materials, among others, have begun to generate interest.
This symposium will highlight recent advances in the design and optimization of new alloy feedstock materials for AM. Presentations are sought that illustrate paths toward broadening the design space to include new, innovative materials, including but not limited to:
• New alloys for AM, such as high-entropy alloys
• Experiments that explore a broader alloy design space, including powder development and microstructural assessments
• Combinatorial experimental approaches for materials design and optimization
• Computational methods for design of alloys with improved properties
• Experiments and simulations that aid in understanding the role of physical properties on alloy design
• Advanced characterization techniques that provide insight for materials design |