ProgramMaster Logo
Conference Tools for MS&T22: Materials Science & Technology
Register as a New User
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting MS&T22: Materials Science & Technology
Symposium Integration between Modeling and Experiments for Crystalline Metals: From Atomistic to Macroscopic Scales IV
Presentation Title Unexpected Deformation-Induced Martensitic Transformations in Ni-Cr Alloy 625
Author(s) Janelle P. Wharry, Caleb D Clement, Chao Yang
On-Site Speaker (Planned) Janelle P. Wharry
Abstract Scope The objective of this talk is to demonstrate unexpected deformation-induced martensitic transformations in Ni-Cr superalloys. In fcc crystals, deformation-induced bcc and/or hcp martensites form through diffusionless, solid-state phase transformations. Martensitic transformations are not believed to be active in high-stacking fault energy (SFE) materials such as Ni-Cr superalloys. Here, we present novel nanoscale martensitic transformations under high strain rate deformation in Alloy 625 (nominally Ni-20Cr-8Mo). Nanoindentations are dissected using focused ion beam milling to extract transmission electron microscopy (TEM) lamellae. High resolution scanning TEM (HR-STEM) reveals nanoscale deformation twinning and martensites, often only a few atomic layers thick. Inverse fast Fourier transformations (FFT) suggest that both hcp and bcc martensites form. Molecular dynamics simulations of Ni-20Cr concur that martensitic transformations occur following stacking fault formation. These results have significant implications for the mechanical behavior of Ni-Cr superalloys, and more fundamentally, challenge our understanding of SFE as a criterion for martensitic transformations.


A Blessing in Disguise: Irradiation Damage Helps Slow Down Alloy Corrosion Rate via Oxide Space Charge Compensation Effects
A Grain Boundary Dislocation-density-based Crystal Plasticity Model for FCC Nanocrystalline Metals
A Numerical Study on How Surfaces Bias Relative Slip Family Activity
Alloying Design and Deep Learning Applications for Concentrated and High-entropy-Driven Ni-based Superalloys
Atomistic Modeling of a Nano-precipitate Strengthened Alloy
Atomistic Modeling of Twin Size Effect on the Localization of Cyclic Strain and Fatigue Crack Initiation in CrCoNi Medium-entropy Alloy
Calibration, Validation, and Application of a Digital Twin for a Standard End-chilled Plate Casting
Combinatorial Synthesis and High-throughput Characterization for Alloy Systems
Concurrent Atomistic-continuum Simulation of the Interplay between Dislocations, Phase Transformation, Twinning, and Reverse Phase Transformation in Plastically Deformed Materials
Continuum Dislocation Dynamics-based Full Field Crystal Plasticity Modeling for Characterizing Dislocation Distribution and Boundary Transmission in Polycrystalline Materials
Crystal Plasticity Modeling of Ultrasonic Softening Effect Considering Anisotropy in the Softening of Slip Systems
Defects and the Electron Beam Interaction Volume in Electron Back-scattered Diffraction
Deformation Mechanisms of Hexagonal Close-packed Materials: Modeling and Experimentation
Designing Stable θ'/L12 Co-precipitates in Cast and Additively Manufactured Al-Cu-Mn-Zr Alloys
Direct Comparison of Microstructure-sensitive Fatigue Modeling Results to Situ High-energy X-ray Experiments
Evolution of Metastable Grain Boundaries and Their Tunability under Extreme Conditions
Examination of Computed Aluminum Grain Boundary Structures and Interface Energies that Span the 5D Space of Crystallographic Character
Experimental Data for Casting Process Simulation Validation
Extended Core Structure of Planar Defects and Localized Phase Transformation in Crystalline Solids
Hybrid Ab Initio-machine Learning Simulation of Dislocation-defect Interactions
In Situ Studies on Room Temperature Deformability of Nanolaminates and Nanocrystalline Intermetallics
Influence of the Cross Slip Based Dynamic Recovery during Plane Strain Compression of Aluminium
Integration of Experiments and Modeling in Polycrystalline Plasticity of Mg-Al Single Phase Alloys
Interactions between Defects and Omega Phase in Ti via Molecular Dynamics and Phase Field Simulations
Investigating Effects of Particles and Voids in Plastic Deformation of Al6061 Using Finite Element Simulations
Leveraging Electron Microscopy to Inform Ab Initio Calculation: Deducing Surface Chemistry and Annealing Conditions from Equilibrium Tungsten Nanoparticle Shapes in Scandate Cathodes
Mapping the Dislocation Density Around a SS316L Weld Using Synchrotron X-ray Diffraction to Validate Finite Element Method Plasticity Modeling
Modelling of Quenching of Low Alloy Steels
Molecular Dynamics Analysis and Optimization of Ultra High Temperature Ceramic (UHTC) Compositions for Propulsion
Monte Carlo Simulations for Synthetic Microstructure Generation of M23C6 Precipitation in 347H Stainless Steels
Motions in Cylindrical Grain Boundaries
Multi-scale and Multi-physical Model of Defect-driven Plasticity in Nanostructural Metals
Multi-scale Characterization of Monotonic and Cyclic Properties of Ultra-high Strength CrCoNi Medium-entropy Alloy with Heterogeneous Partially Recrystallized Microstructure
Multiscale Modeling of the Microstructural Dependence of Degradation Initiation in Al and Ti
Nanoscale Plasticity in Irradiated Inhomogeneous Alloys
New Insights into the Spatiotemporal Structure of Plastic Flow In hcp Materials by Combination of Advanced In Situ Techniques and Modeling
Predicting Yield Strength in β-NiAl + Cu + VC Triple Nano-precipitate Strengthened Austenitic Steel
Predictive Phase-field Modeling of Nucleation and Growth of β1 Precipitates during Aging of Mg-Nd Alloys
Prisms-plasticity: An Open Source Crystal Plasticity Finite Element Software
Propagation of Uncertainty in Molecular Dynamic Simulations of Polycrystalline Nickel
Role of Dislocations and Deformation Twinning on the High-pressure Phase Transformation in Zirconium
Slip Transmission and Voiding during Slip Band Intersections in Fe70Ni10Cr20 Stainless Steel
Tailoring the Properties of Multi-phase Titanium Through the Use of Correlative Microscopy and Machine Learning
Third Generation Thermodynamic Modelling of the Ga-Mn-Ni System
Unexpected Deformation-Induced Martensitic Transformations in Ni-Cr Alloy 625
Validation of Representative Volume Element (RVE) Finite Element Models of Dual Phase Steels Using SEM In-situ Tensile Tests and Digital Image Correlation (DIC)

Questions about ProgramMaster? Contact