ProgramMaster Logo
Conference Tools for MS&T23: Materials Science & Technology
Register as a New User
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting MS&T23: Materials Science & Technology
Symposium Emergent Materials Under Extremes and Decisive In Situ Characterizations
Presentation Title Pressure-induced Non-monotonic Crossover of Steady Relaxation Dynamics in a Metallic Glass
Author(s) Qiaoshi Zeng
On-Site Speaker (Planned) Qiaoshi Zeng
Abstract Scope Relaxation dynamics, as a key to understanding glassy behavior and properties, remains an elusive and challenging issue in condensed matter physics. In this presentation, I will introduce our recent development of in situ high-pressure synchrotron high-energy x-ray photon correlation spectroscopy, which enable us to probe the atomic-scale relaxation dynamics of a cerium-based metallic glass during compression. Although the sample density continuously increases, the collective atomic motion initially slows down as generally expected and then counter-intuitively accelerates with further compression (density increase), showing an unusual non-monotonic steady relaxation dynamics crossover at ~3 GPa. Furthermore, by combining in situ high-pressure synchrotron x-ray diffraction, the relaxation dynamics anomaly is evidenced to closely correlate with the dramatic changes in local atomic structures during compression, rather than monotonically scaling with either sample density or overall stress level. These findings could provide new insight into relaxation dynamics and their relationship with local atomic structures of glasses.


Capturing Laser Induced Dynamics of Materials via Single-Shot Ultrafast Transmission Electron Microscopy
HP-XAFS and Its Application to Topological Insulator Bi2Te3
In-situ Observations of the High Temperature Melting Behaviour of Ce-brannerite
In-situ Raman Studies on Synthesis and Oxidation of UC1-xNx
In-situ/Operando Characterization of Emerging Materials with MeV Ultrafast Electron Diffraction at SLAC National Accelerator Laboratory
In Situ Characterization and Modeling of Spent UO2 Fuel under Ion Irradiation
Irradiation Induced Structural and Thermal Conductivity Changes in Nuclear Fuels
Magnetic Scattering and Spectroscopy at High Pressures at APS and APS-U
Modulation of Structure-function Motifs in Optoelectronic Metal Halides Using High Pressure
Neutron Scattering for Studying Materials Under Extreme Conditions
Perspectives of IXS and NRS Studies in the APSU Era
Polar Magnets in High-Pressure Exotic Perovskites
Pressure-induced Non-monotonic Crossover of Steady Relaxation Dynamics in a Metallic Glass
Pressure Driving Dual-layer Superconductivity in 4Hb-TaSe2 TMD
Structural Manipulation of Ceramic Materials via Extreme Conditions
Will High-entropy Carbides Be Enabling Materials for Extreme Environments?

Questions about ProgramMaster? Contact