ProgramMaster Logo
Conference Tools for 2020 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2020 TMS Annual Meeting & Exhibition
Symposium Thermal Transport in Crystalline and Non-crystalline Solids: Theory and Experiments
Presentation Title The Degradation of the Thermal Conductivity of Oxide Nuclear Fuel
Author(s) Michael W. Cooper, Ben Liu, Chris Stanek, David Andersson
On-Site Speaker (Planned) Michael W. Cooper
Abstract Scope The power density of nuclear fuels creates large thermal gradients across the fuel pellet. This is exacerbated by the poor thermal conductivity of oxide fuel, in particular UO2. Given the importance of temperature in almost all fuel properties, the thermal conductivity tightly couples a range of material processes in nuclear fuel performance. The production of fission products, radiation damage, and O/M change during reactor operation leads to the degradation of the thermal conductivity. For example, degradation due to production of fission gas in the lattice increases the temperature of the pellet and enhances fission gas diffusion and release. In order to support understanding of these coupled behaviors classical MD simulations have been applied to investigate separate phonon scattering processes due to a variety of point defects and clusters created during burnup. The effect of spin-phonon scattering has been accounted for in postprocessing. Phonon scattering in MOX fuel is also investigated.
Proceedings Inclusion? Planned: Supplemental Proceedings volume
Keywords Aluminum,

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

Advancing Insights into Phonon Thermal Transport with Theory/experiment Interactions
Determining the Impact of Material Microstructure on the Effective Thermal Conductivity Using Mesoscale Simulation and Modeling
Electronic Structure and Thermal Transport Measurement of GdxSb2-xTe3
Impact of Irradiation Induced Nanoscale Defects on Optical and Thermal Properties of Cerium Dioxide
Influence of Irradiation-induced Microstructural Defects on the Thermal Conductivity of Single Crystal Thorium Dioxide
Investigations of the Thermal Conductivity of UN
Lattice Thermal Conductivity of Quartz at High Pressure and Temperature from the Boltzmann Transport Equation
Mesoscale Modeling of Thermal Conductivity of a UO2 and BeO Composite Nuclear Fuel
Multi-scale Thermal Transport Characterization of Nuclear Fuels
Multi Scale Modeling of the Thermal Conductivity: Combining First Principle Calculations with Monte Carlo
Nano- and Micro-scale Thermal Transport in Swift heavy Ion Irradiated Oxides
Non-linear Thermal Resistance Trend with Increasing Bilayer Density
Nonlinear Stopping of Phonons in Thermoelectric Crystal PbSe
Phonon Dispersion and Linewidth in ThO2 Measured by Neutron Scattering
Physics-guided Machine-Learning Design of Aperiodic Superlattices with Maximum Localization of Coherent Phonons
Structural, Transport, Magnetic, and Thermodynamic Studies of Delta-phase of Uranium
Study of Thermal Transport Properties of Thorium Dioxide Single Crystals
The Degradation of the Thermal Conductivity of Oxide Nuclear Fuel
Thermal Transport in Crystalline Solids with Irradiation-Induced Defects: Computational Modeling and Experiments
Thermal Transport in Nanostructured Crystalline and Disordered Materials
Thermal Transport in ThO2
Thermal Transport Properties of Uranium Aluminides by First-principles

Questions about ProgramMaster? Contact programming@programmaster.org