About this Abstract |
Meeting |
Materials Science & Technology 2020
|
Symposium
|
High Entropy Materials: Concentrated Solid Solution, Intermetallics, Ceramics, Functional Materials and Beyond
|
Presentation Title |
Atomistic Modeling Predictions of the Structures and Properties of High Entropy Alloy Nanoparticles from Carbothermal Shock Synthesis |
Author(s) |
Guofeng Wang, Zhenyu Liu |
On-Site Speaker (Planned) |
Guofeng Wang |
Abstract Scope |
To address the structural complexities of high entropy alloys (HEAs), we have developed and applied atomistic modeling methods to predict the structures and properties of HEA nanoparticles. In our calculations, the interatomic interactions were described with the modified embedded atom method (MEAM). Using a combined molecular dynamics (MD) and Monte Carlo (MC) simulations, we investigated the formation of solid solution phase in Co0.12Ni0.14Ru0.43Rh0.30, Ru0.44Rh0.30Co0.12Ni0.14, and Ru0.25Rh0.25Co0.2Ni0.2Ir0.1 nanoparticles with size ranging from 2 to 5 nm. Moreover, we used the different duration between MC and MD simulations to model slow annealing and fast quench processes. Our simulation results indicated that the local severe lattice distortion could block the diffusion of atoms and hence lead to a stable solid solution phase during a carbothermal shock synthesis procedure. Consequently, we have demonstrated that atomistic simulation techniques as useful methods for understanding the composition-structure-property relation of novel high entropy alloys. |