ProgramMaster Logo
Conference Tools for MS&T21: Materials Science & Technology
Register as a New User
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting MS&T21: Materials Science & Technology
Symposium Accelerating Materials Science with Big Data and Machine Learning
Presentation Title Developing Physics-based Descriptors for Property Prediction in Oxide Glasses
Author(s) Suresh Bishnoi, Ravinder Ravinder, N. M. Anoop Krishnan
On-Site Speaker (Planned) Suresh Bishnoi
Abstract Scope Data-driven regression methods are becoming popular tools for predicting and designing novel materials. In glass, learning properties directly from glass composition is very common. However, these composition-based models are restricted to a particular set of compositions as an input for which they are trained. Herein, we develop physics-based descriptors that can predict the property for any given composition by transforming composition space into twelve universal descriptors space. To this extent, we trained ML models using XGBoost (Extreme Gradient Boosting) algorithm to learn the descriptor–property relationships for density, Young’s, shear, bulk moduli, thermal expansion coefficient, Vickers’ hardness, refractive index, glass transition temperature, liquidus temperature and abbe number having twelve universal descriptors as an input feature. Further, we interpreted these models using SHAP value analysis to understand contribution of descriptors in property value. Overall, these physics-based descriptors prove to be advanced, reliable, and global data-driven models to predict novel glasses' property.


A Data-driven Simulator for High-throughput Prediction of Electromigration-mediated Damage in Polycrystalline Interconnects
Accelerating Discovery in Computational Materials Science Using CAMD
Bridging the Gap between Literature Data Extraction and Domain Specific Materials Informatics
Characterization of Microscopic Deformation of Materials Using Deep Learning Methods
Considerations for Interpretability, Reliability, And Data-efficiency in Machine Learning Properties of Solid-state Materials
Data Science as Bridge – Materials Characterization and Modeling
Deep Learning-enabled Prediction of Mechanical Properties of Metallic Microlattice Structures Using Uniaxial Compression Videos
Designing Alloys with Process-mapping AI Pre-trained on Empirical Knowledge
Developing Physics-based Descriptors for Property Prediction in Oxide Glasses
Learning Synthesis: Engineering Metal Nanoclusters for Specific Material Properties
Machine Learning in 2D Materials: Benchmarking Crystal Graph Based Convolutional Neural Network (CGCNN) for Open Databases
Machine Learning to Predict Mechanical Properties of Steel Alloys Based on Chemical Composition and Heat Treatment Process
Materials Graph Ontology for Improving the Standardization and Utilization of Materials Data
Molecular Dynamics Simulation Using Lagrangian Neural Networks
Multi-target Prediction of Concrete Engineering Properties Based on a Single Deep Learning Model
P3-18: Rashba Spin Splitting and Photocatalytic Properties of GeC−MSSe (M=Mo, W) Van Der Waals Heterostructures
P3-19: Thermo-mechanical Property Prediction of High-temperature Materials Using a Python Based Interface With Quantum Espresso
Predicting Glass Behaviour from Optical Microscopy Images Using Interpretable Machine Learning
Scalable Gaussian Processes for Predicting the Optical, Physical, Thermal, and Mechanical Properties of Inorganic Glasses Using Compositions for Large Datasets
Searching for New Ferroelectric Materials Browsing a High-throughput Phonon Database
Semantic Segmentation of Plasma Transferred Arc Additively Manufactured NiBSi-WC Optical Microscopy Images Using a Convolutional Neural Network
Slip Band Characterization with Microtensile Testing Using Digital Image Processing
There is No Time for Science as Usual
Topology Optimization for Two-phase Composites Using Active Learning Based Gaussian Process Regression

Questions about ProgramMaster? Contact