ProgramMaster Logo
Conference Tools for MS&T23: Materials Science & Technology
Register as a New User
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting MS&T23: Materials Science & Technology
Symposium Computational Discovery, Understanding, and Design of Multi-principal Element Materials
Presentation Title Effect of Elasticity in Microstructural Evolution of Multi-component, Multi-phase System
Author(s) Jeonghwan Lee, Kunok Chang
On-Site Speaker (Planned) Kunok Chang
Abstract Scope JD Eshelby, RO Williamson, JW Cahn, FC Larche, and JK Lee have theoretically predicted how elasticity affects the thermodynamic equilibrium and microstructure evolution of materials. The knowledge generated by that achievement is now a major part of our understanding of the effect of elasticity on microstructure. The rapid development of computer performance and simulation methods has made it possible to simulate microstructure evolution considering elasticity, and in this study, we verified the results of previous theoretical predictions by using phase-field modeling with consideration of nonlinear effects that were not considered in the previous study. Systematic results on how elasticity affects an actual multi-component multi-phase system by considering factors will be presented.


A New Modified Embedded Atom Method Potential to Understand Plasticity in VNbTaTiZr High Entropy Alloy
Ab-Initio Investigation of Jahn-Teller Distortions within High Entropy Oxide Systems Using Recently Developed Meta-GGA Functionals
Charge-Density based Convolutional Neural Networks for Property Prediction in High Entropy Alloys
Computational Microstructural Design for Multi-phase Multi-principal Element Alloys
Computational Studies of Deformation Twinning in BCC Complex Concentrated Alloys
Critical Shear Stress Distribution and Average Dislocation Mobility in FeNiCrCoCu High Entropy Alloys Computed via Atomistic Simulations
Effect of Elasticity in Microstructural Evolution of Multi-component, Multi-phase System
Effects of Chemical Short-range Order in Medium Entropy Alloy CoCrNi
First-principles Study for Discovery of High-entropy MXenes
Hybrid Machine Learning Approach for Designing Refractory High Entropy Alloys
Microstructural Engineering via Heat Treatments in Multi-principal Element Alloy Systems with Miscibility Gaps
Modelling and Simulation on Mechanical Behavior of High-entropy Alloys
Phase Field Simulation of AgCuNi Ternary Alloy: Exploring Ag-CuNi Precipitation and Immiscibility
Predicting Ideal Shear Strength of Dilute Multicomponent Ni-based Alloys by an Integrated First-principles, CALPAHD, and Correlation Analysis
The Elastic Properties and Stacking Fault Energy of FeNiMoW
Yield Strength-Plasticity Trade-off and Uncertainty Quantification in ML-based Design of Refractory High-entropy Alloys

Questions about ProgramMaster? Contact