ProgramMaster Logo
Conference Tools for 2023 TMS Annual Meeting & Exhibition
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting 2023 TMS Annual Meeting & Exhibition
Symposium Hume-Rothery Symposium on First-Principles Materials Design
Presentation Title First principle design of high entropy materials for energy storage and conversion
Author(s) Bin Ouyang, Gerbrand Ceder
On-Site Speaker (Planned) Bin Ouyang
Abstract Scope High entropy materials promised a lot of opportunities in the field of structural metal alloys due to their extraordinary mechanical properties. It is also rising up in many other fields including structural ceramics, thermoelectricity, piezoelectricity, etc. However, thorough studies of designing high entropy materials for energy storage and conversion are largely absent. The major obstacle in this field is whether the mixing of multi-component species will necessarily improve targeted properties such as ion transport and chemical absorption/adsorption. In this talk, it will be demonstrated that high entropy can benefit the design of battery cathode materials with high energy density and high rate performance, as well as solid-state ionic conductors that deliver ultra-fast ion conduction. Moreover, future opportunities for designing other high entropy energy materials will also be demonstrated.
Proceedings Inclusion? Planned:
Keywords Energy Conversion and Storage, High-Entropy Alloys, Computational Materials Science & Engineering

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

Advances in Natural Language Processing for Building Datasets in Materials
Available methods for predicting materials synthesizability using computational and machine learning approaches
Computational Design of Multicomponent Nanoparticle Morphologies
Computational Discovery of Materials with Fast Oxygen Kinetics
Computational materials design and discovery for next-generation solid-state batteries
Computational tools for the generation of high-dimensional phase diagrams
Design of Novel Electrode and Solid Electrolyte Materials Guided by Crystal Structure Characterization and Understanding
Disorder and degradation in rock-salt-type lithium-ion battery cathodes
Double Descent, Linear Regression, and Fundamental Questions in Alloy Model Building
Dynamic stability design of materials for solid-state batteries
Establishing links between synthesis, defect landscape, and ion conduction in halide-type solid electrolytes
First principle design of high entropy materials for energy storage and conversion
From atom to system - how to build better batteries
Holistic Integration of Experimental and Computational Data and Simple Empirical Models for Diffusion Coefficients of Metallic Solid Solutions
Learning Rules for High-Throughput Screening of Materials Properties and Functions
Linking phenomenological theories of materials to electronic structure
Machine Learning Assisted Materials Generation
Machine Learning for Simulating Complex Energy Materials with Non-Crystalline Structures
Matterverse.ai - A graph deep learning database of materials properties
Microstructure modeling with machine learning
Millisecond-ion Transport in Mixed Polyanion in Energy Materials
New battery chemistry from conventional layered cathode materials for advanced lithium-ion batteries
Origin of the Invar effect
Plasmonic high-entropy carbides
Predicting synthesis and synthesizability beyond the DFT convex hull
Probing Local Structures, Electronic Structures and Defects in Battery Materials by Combining NMR and DFT Calculations
Structure determination – from materials design to characterization
The Stewardship of a Materials Genome
Understanding Complex Materials and Interfaces through Molecular Dynamics Simulations
Understanding key properties of disordered rock-salt Li-ion cathode materials based on ab initio calculations and experiments
William Hume-Rothery Award Lecture: Ab initio Thermodynamics and Kinetics from Alloys to Complex Oxides

Questions about ProgramMaster? Contact programming@programmaster.org