ProgramMaster Logo
Conference Tools for MS&T21: Materials Science & Technology
Login
Register as a New User
Help
Submit An Abstract
Propose A Symposium
Presenter/Author Tools
Organizer/Editor Tools
About this Abstract
Meeting MS&T21: Materials Science & Technology
Symposium Accelerating Materials Science with Big Data and Machine Learning
Presentation Title Scalable Gaussian Processes for Predicting the Optical, Physical, Thermal, and Mechanical Properties of Inorganic Glasses Using Compositions for Large Datasets
Author(s) Suresh Bishnoi, Ravinder Ravinder, Hargun Singh Grover, Hariprasad Kodamana, N. M. Anoop Krishnan
On-Site Speaker (Planned) Suresh Bishnoi
Abstract Scope Gaussian process regression (GPR) is an extremely useful technique to predict composition–property relationships in glasses. The GPR’s main advantage over other machine learning methods is its inherent ability to provide the standard deviation of the predictions. However, the method remains restricted to small datasets due to cubic time complexity associated with it. So herein, using a scalable GPR algorithm, namely, kernel interpolation for scalable structured Gaussian processes (KISS-GP) along with massively scalable GP (MSGP), we develop composition–property models for inorganic glasses. The models are based on a large dataset with more than 100000 glass compositions, 37 components, and nine crucial properties: density, Young’s, shear, bulk moduli, thermal expansion coefficient, Vickers’ hardness, refractive index, glass transition temperature, and liquidus temperature. We show that the models developed here are superior to the state-of-the-art machine learning models. We also demonstrate that the GPR models can reasonably capture the underlying composition-dependent physics.
Proceedings Inclusion? Undecided

OTHER PAPERS PLANNED FOR THIS SYMPOSIUM

A Data-driven Simulator for High-throughput Prediction of Electromigration-mediated Damage in Polycrystalline Interconnects
Accelerating Discovery in Computational Materials Science Using CAMD
Bridging the Gap between Literature Data Extraction and Domain Specific Materials Informatics
Characterization of Microscopic Deformation of Materials Using Deep Learning Methods
Considerations for Interpretability, Reliability, And Data-efficiency in Machine Learning Properties of Solid-state Materials
Data Science as Bridge – Materials Characterization and Modeling
Deep Learning-enabled Prediction of Mechanical Properties of Metallic Microlattice Structures Using Uniaxial Compression Videos
Designing Alloys with Process-mapping AI Pre-trained on Empirical Knowledge
Developing Physics-based Descriptors for Property Prediction in Oxide Glasses
Learning Synthesis: Engineering Metal Nanoclusters for Specific Material Properties
Machine Learning in 2D Materials: Benchmarking Crystal Graph Based Convolutional Neural Network (CGCNN) for Open Databases
Machine Learning to Predict Mechanical Properties of Steel Alloys Based on Chemical Composition and Heat Treatment Process
Materials Graph Ontology for Improving the Standardization and Utilization of Materials Data
Molecular Dynamics Simulation Using Lagrangian Neural Networks
Multi-target Prediction of Concrete Engineering Properties Based on a Single Deep Learning Model
P3-18: Rashba Spin Splitting and Photocatalytic Properties of GeC−MSSe (M=Mo, W) Van Der Waals Heterostructures
P3-19: Thermo-mechanical Property Prediction of High-temperature Materials Using a Python Based Interface With Quantum Espresso
Predicting Glass Behaviour from Optical Microscopy Images Using Interpretable Machine Learning
Scalable Gaussian Processes for Predicting the Optical, Physical, Thermal, and Mechanical Properties of Inorganic Glasses Using Compositions for Large Datasets
Searching for New Ferroelectric Materials Browsing a High-throughput Phonon Database
Semantic Segmentation of Plasma Transferred Arc Additively Manufactured NiBSi-WC Optical Microscopy Images Using a Convolutional Neural Network
Slip Band Characterization with Microtensile Testing Using Digital Image Processing
There is No Time for Science as Usual
Topology Optimization for Two-phase Composites Using Active Learning Based Gaussian Process Regression

Questions about ProgramMaster? Contact programming@programmaster.org